
The Atari ST M68000 tutorial part 15 – on fading to black

It has occurred to me that by striving ever forward, we’ve forgotten to speak
about some basic things, so for this tutorial and the next one, we’ll be taking a
step back and reviewing some things. You may have guessed these techniques
yourself, but it never hurts to have it spelled out. Also, I thought I’d share
some new thoughts on development, we’ll take that first.

Most of the source for the tutorials in the past I’ve actually written
in Devpac on a real Atari, but it has now become clear to me that developing
in Windows on an IBM compatible is easier and more efficient. I got the tip
over at www.atari - forum.com , a discussion forum for all topics Atari (where
I’m one of the moderators for the coding section, yay). Have one “launcher
file” with only one line

include whateveryoursourcename.s

By doing this, you’ll assemble any source files you want, and you
can edit those source files outside of Devpac, and then assemble them in
Devpac. When I wrote this tutorial, I had a file named _WRAP.S that had the
line “include tut15.s” in it. Then I used Ultraedit (my editor of choice) to edit
TUT15.S, I also had Devpac running under STEem. Whenever I felt like
assembling my source, I just saved in Ultraedit, alt - tabbed into STEem and hit
alt - a to assemble my source; smooth and easy.

Speaking of Ultraedit, there is a topic going on over at
http: / /www.atari - forum.com /viewtopic.php?t=946 to try and work out good
syntax high lightning for Atari assembly in Ultraedit (www.ultraedit.com).
Wow, that’s a lot of various things you wouldn’t have seen pop up in a tutorial
from say 1994. Now onto the serious stuff.

The palette is an extremely powerful thing when you want to
change colors quick and easy. Unfortunately it has the obvious limitation of
not changing the pixels. Using the palette you can black out the screen
without erasing the contents (by setting all colors to black), make things pulse
(by incrementing and decrementing color intensity) or wait with displaying a
picture. Say you want to calculate a big fractal, just set the palette to all 0,
calculate your fractal, then whap in the palette to display the result. The effect
will be that no one will see you draw the fractal, only the final result will be
shown.

As we’ve been through before, there are 16 colors in the palette,
the first one being the background color, located at $ff8240. Each color is a
word long, making the palette end at $ff825e. Each word is built up like this

00000RRR0GGG0BBB

The first three bits control blue intensity, then there’s a zero bit,
the next three bits control green intensity, a zero and the final (non- zero)
three bits control red intensity. The maximum value you can get out of three
bits is 8, and since the color intensities are at 4 bit boundaries, they are very
easy to access in hex (since each character in hex mode is a 4 bit quantity).
Thus $700 means max intensity of red and zero intensity for green and blue,
$444 means medium intensity for all three colors.

When they built the STe, they thought that it would be nice to have
more colors in the palette, and indeed, it’s easy to just add an additional bit
since that would still have the palette on a 4 bit boundary, making each color
range from 0- 15. However, there was a problem, they could not add a bit in
the beginning and just shift the other bits to the left, since that would mean
all old palette values would in effect be shifted left one bit creating an entirely
different value than was originally intended.

The solution to this problem is cunning, but unfortunate. They
added the least significant bit where the zero bit used to be. This maintains
backwards compatibility, and adds 8 new possible color intensities. So the STe
palette looks like this

0000rRRRgGGGbBBB

This means that $700 is still (almost) maximum intensity of red.
What in the memory is perceived as the most significant bit, is in palette terms
the least significant bit. This sounds very confusing perhaps, but just picture
moving the uppermost bit of each color intensity first. Let’s say then that we
want the intensity between $100 and $200, this would be color $900, since
that would be

0000rRRRgGGGbBBB
0000100100000000

Which we can interpret as

0000RRRrGGGgBBBb
0000001100000000

Thus, when using the STe palette, we must think about the fact
that the most significant bit for each color, is in actuality the least significant
bit. The number order for intensities, from lowest to highest is 0, 8, 1, 9, 2, A,
3, B, 4, C, 5, D, 6, E, 7, F. So if you use color $fff, the STe will interpret this as
intensity 15 for all colors, and the ST will interpret it as color intensity 7, since
the ST doesn’t care about whether the fourth bit is set or not.

That should be all there is to the palette, making full utilization of
it will be up to each one. In order to do something I thought we’d just do a
simple fade in effect. Fading in a picture is so much nicer than just whipping it
onto screen. Fading out is also much nicer than just zapping it away, you can
also fade to white and make the screen sort of flash away.

What we want is to begin with a black palette and pixel data on the
screen, then increment the color values of the palette until they reach the
values intended for the picture. In order to keep things simple, I opted to skip
the STe palette since there’s lots of shifting involved whenever you want to
use it. So the fade will only have a maximum of 7 intensities to work with,
making it a pretty bad looking fade effect.

We’ll need a copy of the original palette, and a current palette
which we increment until it reaches the original. It would be tempting to
compare the real palette to the current one and add $111 (one intensity of
each color) if they don’t match, but that won’t work. Say one color is supposed
to be $100, if we compare our current $000 with that, they don’t match, so we

add $111 making the current color $111, which is more than $100. Instead, we
must compare each red, green and blue value individually. This can easily be
done by just masking off all bits except the three controlling the intensity for
either red, green or blue.

and.w #%011100000000,d0 mask off all but red values
and.w #%011100000000,d1 mask off all but red values

cmp.w d1,d0 see if red is correct intensity
beq red_fin if not ...
add.w #%000100000000,d1 ... add one intensity of red

red_fin

Let’s assume d0 holds the real color, and d1 holds the temporary.
All bits except the ones controlling red are masked off, then values compared.
If they do not match, add one to the value. The value to add will be different
depending on which intensity we check for, since different intensities begin at
different bit positions. That’s pretty much it, here’s the entire source

section text

jsr initialise

movem.l picture+2,d0-d7 put picture palette in d0-d7
movem.l d0-d7,pal copy palette to pal

movem.l temp_pal,d0-d7 put current palette in d0-d7
movem.l d0-d7,$ff8240 apply current palette (all 0)

move.w #2,-(a7) get physbase
trap #14
addq.l #2,a7

move.l d0,a0 a0 points to screen memory
move.l #picture+34,a1 a1 points to picture

move.l #7999,d0 8000 longwords to a screen
loop

move.l (a1)+,(a0)+ move one longword to screen
dbf d0,loop

move.l $70,old_70 backup $70
move.l #main,$70 start main routine

move.w #7,-(a7) wait keypress
trap #1
addq.l #2,a7

move.l old_70,$70 restore $70

jsr restore

clr.l -(a7)
trap #1

main
move.w sr,-(a7) backup status register
or.w #$0700,sr disable interrupts
movem.l d0-d7/a0-a6,-(a7) backup registers

add.l #1,counter increment counter variable
cmp.l #15,counter only execute main sometimes
bne do_nothing skip instructions
clr.l counter reset counter

move.l #pal,a0 a0 points to values to reach
move.l #temp_pal,a1 a1 points to current values

rept 16 do for each color
jsr check_red see if red intensity should

increase
jsr check_green see if green intensity should

increase
jsr check_blue see if blue intensity should

increase
add.l #2,a0 point to next color
add.l #2,a1 point to next color
endr

movem.l temp_pal,d0-d7 put current palette in d0-d7
movem.l d0-d7,$ff8240 apply current palette

do_nothing
movem.l (a7)+,d0-d7/a0-a6 restore registers
move.w (a7)+,sr restore status register
rte finnished interrupt

check_red
move.w (a0),d0 move one final color into d0
move.w (a1),d1 move one temp color into d1

and.w #%011100000000,d0 mask off all but red values
and.w #%011100000000,d1 mask off all but red values

cmp.w d1,d0 see if red is correct intensity
beq red_fin if not ...
add.w #%000100000000,(a1) ... add one intensity of red

red_fin
rts

check_green
move.w (a0),d0 move one final color into d0
move.w (a1),d1 move one temp color into d1

and.w #%000001110000,d0 mask off all but green values
and.w #%000001110000,d1 mask off all but green values

cmp.w d1,d0 see if green at correct
intensity

beq green_fin if not ...
add.w #%000000010000,(a1) ... add one intensity of green

green_fin
rts

check_blue
move.w (a0),d0 move one final color into d0
move.w (a1),d1 move one temp color into d1

and.w #%000000000111,d0 mask off all but blue values
and.w #%000000000111,d1 mask off all but blue values

cmp.w d1,d0 see if blue at correct intensity
beq blue_fin if not ...
add.w #%000000000001,(a1) ... add one intensity of blue

blue_fin
rts

include initlib.s

section data
old_70 dc.l 0
picture incbin sleepsun.pi1
counter dc.l 0

section bss
pal ds.w 16
temp_pal ds.w 16

First I save the palette of the picture in a storage space, then I put
the temporary palette in, since the temporary palette is initialized to all 0’s,
this has the effect of blacking out the screen. Next I load up the picture as
described in tutorial 6 and set up the main routine.

The counter code is for delay purposes; otherwise the fade effect
would hardly be visible. I make a0 point to the palette to reach, and point a1
to the temporary one. Then I check the individual intensities, and add 2 to
each pointer in order to point to the next color, repeating this for the number
of colors in the palette, namely 16.

You will notice that the check sub- routines are a bit different than
the one described above, I add to the value pointed to by a1, which is the
current palette. It may be considered slightly bad program habit to just
assume that a1 points to the current palette like that, but coding demos and
assembly in general depends on tight kept code that knows what it’s doing.
Besides, the tutorials aren’t really for teaching you how to make good code;
they are intended as basic introductions to various coding techniques.

That’s that, one easy effect achieved by manipulating the palette. If
you want to fade to white, just set the temporary palette to the real palette,
and increment until you reach $777. If you want to experiment, I suggest
trying to implement the effect with a STe palette instead, the included picture
has an STe palette so it’s ready to go. This should involve shifting the fourth
bit of each color intensity down as the first when adding to the color intensity,
and then shift it back. For the next tutorial, I think we’ll handle full screen
scrolling, without moving any picture data!

perihelion of poSTmortem, 2003- 03- 28

“I wish for this night - time
to last for a lifetime
The darkness around me
Shores of a solar sea

Oh how I wish to go down with the sun
Sleeping
Weeping
With you”
- Nightwish, Sleeping Sun

