
The Atari ST M68000 tutorial part 14 – of using the gramophone

Wow, it really was a long time since the last tutorial. I’ve had more and more
to do in school and other things have popped up, maybe I just needed a break
too. Now I really feel up to writing again, thanks to some encouragement on
the Atari forum (http: / /www.atari - forum.com).

This here tutorial will be the follow up of the previous one, in
which I promised to tell you how to play the .ym files of the ST- sound format
from Arnaud Carré. It will be quite easy and a bit of a soft start actually. The
focus lies not so much on the code, but how to find and apply knowledge.

Like I always say, I am no musician, neither am I an artist, so
therefore, I need to rip stuff or have it made for me. I have loads of .ym files
on my PC, which can be played by using a plugin for Winamp. Wouldn’t it be
nice to be able to use this wealth of music? Yes it would, I wonder how that
can be achieved, here’s how.

In order to use the files, we need information on the file format.
See tutorial 6 for a quick refresh on files if that’s needed. Load up a good
search engine in the browser, I used Google (http: / /www.google.com). Now we
want to find info on the .ym file format, so a search string of “ym file format”
would seem appropriate. Would you look at that, the first find seems good,
taking us to http: / / leonard.oxg.free.fr /ymformat.html . Quickly browsing the
side, we judge it seems to hold what we need. We also discover the file format
is freeware, so there’s no need to worry about the cops.

Hum hum, there seem to be different versions of the file format,
didn’t know that … hum hum, this information only applies to YM6, the latest
version. “So YM6 is just a register dump file”, this is an important key, it tells
us how the file format works. It seems that a .ym file is simply a dump of the
data used to play a song, but that’s not enough, we need to know how the data
is organized. Reading on … Ah, .ym files are packed using LHA, so that’s why
they are so small. Using the freeware UltimateZip
(http: / /www.ultimatezip.com), a .ym file can be unpacked, or any other LHA
packer, but UltimateZip is my choice of program.

Reading ever further down the page … ah, here it comes. The .ym
file contains 16 bytes of data for each frame, interleaved. Sure, the sound chip
has 16 registers, so by just putting the data into the registers of the sound
chip, music should be played. Lastly, there’s some info on the file header.
Some files have headers that tell of important information for the rest of the
file, here for example, it’s nice to know how long a song actually is. There’s
some talk about didigrums and so, that will not be covered in this tutorial and
you are welcome to explore it yourself.

So, now we have all the information we need, we just have to
structure it and go through it. Load up the included .ym file JAMBLV1.YM in
your favourite hexeditor. It’s also possible to put it in an otherwise empty
source file, assemble it and go into the debugger like this

nop
incbin jamblv1.ym

It seems that every program starts with two bytes of data that
would overwrite the data in jamblv1.ym, that’s what the nop is there for. By

hitting tab once to get into the memory window, you can use the arrow keys to
scroll up and down in the jamblv1.ym file. Now we’ll traverse the file and see
if it corresponds to the information we have on what the file should look like.
It starts with the values $59, $4d and $21, which identifies the file as a YM6
file. When interpreted as ASCII (numbers to letters), these numbers become
the letters Y, M and !. Next follows a test string, “LeOnArD!”, all good so far.

After the initial check- things comes the interesting information, a
long (4 bytes) that tells us the number of frames in the file. In this case, it’s a
value of $0000bea, which corresponds to 3050 in decimal. Note that I wrote
out the leading two bytes that for now only contain zeros, but they are
important to count otherwise you’ll get lost. What does this mean exactly?
Well, frame of music is just like a frame of graphics, the ST usually operates at
50 Hertz which equals 50 frames per second. So we divide 3050 by 50 and get
the value 61, indicating the tune should be 1:01 long. Load it up in Winamp to
test, yep, seems to be right.

Next comes four bytes of song attributes, that I have no idea what
it is, but zero seems to be a safe value, and two bytes of digidrums, which are
also zero. Some files have a song attribute of one, and they seem to work fine
to. You’ll have to experiment with these yourself if you find songs that should
use digidrums, or mail LeOnArD! Another uninteresting value, $001e8480, or
2000000, which seems to indicate this is indeed an Atari tune. Then two bytes,
telling us the tune is operating at a frequency of 50 Hz. Lastly an additional
six bytes of zero data.

Right, you with me so far? It’s just a question of slowly going
through the file and check that everything is in order and corresponds to the
information we have. Of course it is in order, otherwise the file wouldn’t work
in Winamp, but I want to make sure for myself. Now comes some text again,
according to Leonard’s page, these are the song name, author name and song
comment.

The data is in null terminated string format. This means the strings
can be variable in length, and ends with the value zero. Quite true, after each
little string, we can see zeroes shining through. After these strings, the real
sound data begins, also of unknown length. However, since we know that
there are 3050 frames of data, and each frame holds 16 bytes of sound data,
there are 3050 * 16 = 48800 bytes of data here, this calculation also seems
correct since this is roughly the file size. At the end, there are also four bytes
forming the string “End!”.

So what do we really need here? Two things, the number of frames,
to know how long the music file is, so we know when to terminate play, or
loop the song, and the start address of the music data. We know the address
of the number of frames, so that’s easy to just store in a variable. Getting to
the music data is trickier, since we don’t know exactly where it is. Sure, we can
hexedit the file and then hardcode the address into the program, but a more
general way of finding the music start data would be nice, so that we easily
can play many different .ym files without having to check the start address of
the sound data for each file.

What we want is to get to the end of the three text strings, because
this is where the sound data begins (if you don’t have any digidrums). To do
this, we put ourselves at the beginning of the text field, which always start at
the same place, then we check each byte for a zero, since this means the end

of a string, and do this three times. In so doing, we will have passed by all the
three text strings, like so

move.l #ym_file,a0 start of ym file
move.l 12(a0),frames store number of frames
add.l #34,a0 beginning of text

song_name
cmp.b #0,(a0)+ search for 0
bne song_name

comment
cmp.b #0,(a0)+ search for 0
bne comment

song_data
cmp.b #0,(a0)+ search for 0
bne song_data
move.l a0,music skipped 3 zero, store address

Now we have the length of the tune in frames, and the start
address for the sound data in music. What was that about interleaved data?
The thing is, that many registers of the sound chip are all zero. In order to
compress better, it would be nice to have all these zeros in one long row.
Therefore, the data is not presented in the order it’s supposed to be inserted
in the sound chip, rather, the data is presented one full register after another.
Thus, in our file, there is 3050 bytes of register 0 data, then 3050 bytes of
register 1 data and so on.

When we put the sound data in the yammy, we have to add the
number of frames for each input. In this way, we will first input data from
register 0, then we skip the number of frames to reach the data for the next
register and so on. Here’s the entire code, the code for the VU bars has already
been discussed and is only included here for fun, so there is very little new
code

jsr initialise

move.l #palette,a0 pointer to palette
movem.l (a0)+,d0 - d7 palette in d0- d7
movem.l d0- d7,$ff8240 apply palette

move.l #ym_file,a0 start of ym file
move.l 12(a0),frames store number of frames

add.l #34,a0 beginning of text

song_name
cmp.b #0,(a0)+ search for 0
bne song_name

comment
cmp.b #0,(a0)+ search for 0
bne comment

song_data
cmp.b #0,(a0)+ search for 0
bne song_data

move.l a0,music skipped 3 zero, store address

move.l $70,- (a7) backup $70
move.l #main,$70 start main routine
move.w #7,- (a7)
trap #1
addq.l #2,a7 wait keypress
move.l (a7)+,$70 restore $70

jsr restore

clr.l - (a7)
trap #1 exit

main
movem.l d0- d7/a0 - a6,- (a7) backup registers

move.l music,a0 pointer to current music data
moveq.l #0,d0 first yammy register

play
move.b d0,$ff8800 write to register
move.b (a0),$ff8802 write music data
add.l frames,a0 jump to next register in data
addq.b #1,d0 next register
cmp.b #16,d0 see if last register
bne play if not, write next one

addq.l #1,music next set of registers
addq.l #1,play_time 1/50th second play

time

move.l frames,d0
move.l play_time,d1
cmp.l d0,d1 see if at end of music file
bne no_loop
sub.l d0,music beginning of music data
move.l #0,play_time reset play time

no_loop
jsr vu_bars paint the vu bars

movem.l (a7)+,d0- d7/a0 - a6 restore registers
rte

* put in VU bars

vu_bars
move.l $44e,a0 get screen address
add.l #160*199 - (15*2)*160,a0 bottom area of screen
move.l #bar,a1 point to bar colours

rept 15 15 max volume
movem.l (a1)+,d0 - d1 VU bar colour in d1-

d2
movem.l d0- d1,(a0) first VU bar
addq.l #8,a0 next VU bar
movem.l d0- d1,(a0) second VU bar
addq.l #8,a0 next VU bar
movem.l d0- d1,(a0) third VU bar
add.w #320- 16,a0 two lines down, two

bars left
endr

* delete VU bars depending on volume
move.l $44e,a0 get screen address
add.l #160*199 - (15*2)*160,a0 bottom area of screen

moveq.l #0,d0 clear d0
move.b #8,$ff8800 chanenl a volume
move.b $ff8800,d0 put volume in d0
jsr del_bar

moveq.l #0,d0 clear d0
move.b #9,$ff8800 channel b volume
move.b $ff8800,d0 put volume in d0
add.l #8,a0 next VU bar
jsr del_bar

moveq.l #0,d0 clear d0
move.b #10,$ff8800 channel c volume
move.b $ff8800,d0 put volume in d0
add.l #8,a0 next VU bar
jsr del_bar

rts

del_bar
* screen address of top line in a0
* volume in d0, gets detroyed

move.l a0,- (a7) backup a0
move.l a1,- (a7) backup a1
and.b #%1111,d0 keep only lowest 4 bits

move.l #delete,a1 beginning of delete blocks
mulu #12,d0 length of one delete block

add.l d0,a1 skip some delete instructions
jmp (a1) jump to correct delete position

delete
rept 15
clr.l (a0) clear two bit planes
clr.l 4(a0) clear two bit planes
add.l #320,a0 hop two lines down
endr

move.l (a7)+,a1 restore a1
move.l (a7)+,a0 restore a0
rts

include initlib.s

section data
music dc.l 0 address of music data
frames dc.l 0 how many frames of music data
play_time dc.l 0 how many VBL's has elapsed

ym_file incbin jamblv1.ym

bar
* colour data for each line of VU bar

dc.w $00ff,$00ff,$00ff,$00ff
dc.w $0000,$00ff,$00ff,$00ff
dc.w $00ff,$0000,$00ff,$00ff
dc.w $0000,$0000,$00ff,$00ff
dc.w $00ff,$00ff,$0000,$00ff
dc.w $0000,$00ff,$0000,$00ff
dc.w $00ff,$0000,$0000,$00ff
dc.w $0000,$0000,$0000,$00ff
dc.w $00ff,$00ff,$00ff,$0000
dc.w $0000,$00ff,$00ff,$0000
dc.w $00ff,$0000,$00ff,$0000
dc.w $0000,$0000,$00ff,$0000
dc.w $00ff,$00ff,$0000,$0000
dc.w $0000,$00ff,$0000,$0000
dc.w $00ff,$0000,$0000,$0000
dc.w $00ff,$0000,$0000,$0000

palette
dc.w $000,$023,$023,$024,$024,$025,$026,$026
dc.w $027,$027,$227,$327,$427,$527,$627,$727

I start off with a normal setup, then read in the music data as
described previously and start the main routine. The main routine here has

the actual routine for playing the tune, and the rest of the code is just VU
bars.

First, make a0 point to the current music data, this is somewhere
in the music file (on a number of frames boundary), then put the yammy
register number in d0. The real routine for actually getting the sound data into
the yammy is very compact. D0 holds the number of the register to
manipulate, putting that in $ff8800 lets us manipulate the register in
question, then I just put in the music data. After that, it’s a question of adding
the number of frames to the music pointer, in order to point to the next
register. Increment d0 to point to the next register, and do this 16 times, one
time for each register. If you don’t remember about the sound chip, recheck
tutorial 13.

Next I increment the music pointer, so that it points to the
beginning of the next sound data set, and increase the number of played
frames by one. The last part of the main routine checks to see if the number
of played frames equals the number of frames, if this is so, I subtract the
number of frames from the music pointer. This makes the music pointer point
to the beginning of the music data again. The play time also needs to be reset
of course, finally, a jump to the VU routine, just for the visual effect. Not to
complex when you think about it, actually, I managed to get it right on the
first compile … almost, I had a slight offset error.

The routine should work for any and all YM6 version files without
anything fancy (digidrums etc), and perhaps even with some fancy stuff. I
don’t really know. Unfortunately it will not play any other ym versions, you’ll
have to work that out yourself. In order to get any music you want from any
Atari source, you can use SainT to record the music in .ym format, it’s that
simple.

With this routine, you could make yourself a .ym file player for the
Atari. As the program is now, it’s really crappy, there is no error reporting of
any kind for starters. Perhaps some tunes really are in 60 Hertz, then they
would play wrongly, or perhaps the file is something other than YM6 probably
resulting in a crash. You should add some error reporting yourself.

One nice thing to do with this is to just hook up the music to the
VBL, then drop out of the program (not waiting for a keypress nor restoring
the VBL). The music will still be playing and you can go on coding. This is very
unstable though, and doing this in the GEM desktop will probably get you an
immediate crash, doing this in Devpac will probably get you a crash when you
compile anything. It’s just an idea to get you going.

perihelion of poSTmortem, 2003- 02- 22

“They fought like warrior poets. They fought like Scotsmen and
won their freedom forever.”

- Braveheart

