
The Atari ST M68000 tutorial part 12 – of controlling the puppets

Yep, here we go again, this time I think we’ll have a nice little tutorial on our
hands, not that big. It only concerns the workings of the joystick. It could’ve
involved the mouse as well, but to be honest I haven’t gotten the workings of
the mouse down yet. The code will build heavily on the previous tutorial, since
we are going to move a sprite around with the joystick, but you don’t need to
understand the sprite parts of the code to understand the workings of the
joystick. If you don’t know what a joystick is, or if you don’t recognise the
little sprite ship used in the sample source, you are not allowed to read
further. Please stop this instant and browse the web for more generally related
Atari information.

A while back, I thought the ST was so much cooler than your
average PC, because with the ST, you just have to plug in a joystick and it
works. With a PC, you have to install drivers and shit, and configure the exact
joystick and generally mess around lots and perhaps even then it won’t work
or the program you want to run doesn’t support your joystick. All in all
inferior construction, or so I thought. Actually, with the ST, you also need to
set up your own joystick driver. In fact, since you usually don’t have a hard
drive and the OS (operating system) doesn’t have drivers for the joystick, every
program needs it’s own drivers for the joystick. Writing the joystick driver
isn’t at all difficult, but you have to have some working knowledge to do it.

There is a little 6301 processor inside the Atari ST, which takes
care of the keyboard, the mouse and the joystick. It even has a real time clock.
This cute little chip is sometimes referred to as the IKBD, for Intelligent
KeyBoarD. It might be fun to know that the IKBD has 4K (4096 bytes) of ROM
memory, and 128 bytes of RAM. ROM stands for Read Only Memory, and as it
says, it’s memory that can’t be altered, RAM is Random Access Memory and it
is that which we usually mean by memory. The 128 bytes of RAM on the IKBD
are only used as a temporal storage area. The reason for having a separate
chip altogether taking care of the keyboard, mouse and joystick is that those
actions won’t burden the main processor (the 68000, the one we’ve been
programming so far in these tutorials). Instead, we can poll the IKBD as we
choose, or tell it to report stuff in any way we choose, and just let the IKBD
worry about the details.

Our mission therefore is clear: we must find a way to make the
IKBD report the status of the joystick, and also find a way to read that status
in some way. When that is accomplished, we can use the sprite routine from
the previous tutorial as it is, with only a change in the move_sprite subroutine.
The new subroutine will update the X and Y coordinates in accordance with
the joystick status instead of just moving it about.

Trap function 25 of the XBIOS will allow us to send commands to
the IKBD. However, unlike other trap calls, the input data is a pointer to a
string of data. The text file IKBD.TXT may seem very sketchy and difficult to
understand, but it does contain a list of all the possible commands that you
can send to the IKBD, taking a look inside it, we see function $14. IKBD
command $14 will report joystick status every time the joystick is changed.
All well and good, this is how we set it up.

move.l #joy_on,- (a7) pointer to IKBD instructions

move.w #0,- (a7) instruction length - 1
move.w #25,- (a7) send instruction to IKBD
trap #14
addq.l #8,a7

joy_on dc.b $14

The first parameter is a pointer to the address which contains the
commands, the second parameter is the length in byte of the command list
minus one, in this case zero. Then the function number, a trap calling XBIOS
and a normal stack clean up. Sure, so now the joystick reports information,
but where does the information go? Well, actually we need to write our own
routine to read the joystick information.

Every time the joystick sends information, there is a jump to an
address with instructions of what to do with this data, compare this with the
timers from tutorial 9. Also, as with the timers, we will hook up our own
routine to read the joystick. With trap function 34 of the XBIOS, the IKBD
returns a list of all its vectors. The address of the IKBD vectors is put in d0.
The joystick report vector is at offset 24, so by putting our own joystick
routine at the address pointed to by d0 +24, we have effectively hooked up
our own joystick routine.

move.w #34,- (a7)
trap #14
addq.l #2,a7 return IKBD vector table

move.l d0,ikbd_vec store IKBD vectors
address

move.l d0,a0 a0 points to IKBD vectors
move.l 24(a0),old_joy backup old joystick vector

move.l #read_joy,24(a0) input our joystick vector

read_joy
nop so far, we don’t know what to do
rts note, rts, not rte

ikbd_vec dc.l old IKBD vector storage
old_joy dc.l old joy vector storage

Straightforward, first get the address of the IKBD vectors. Store it
for future restoration. Then put the address in a0 so that a0 points to the
IKBD vectors, backup the old joystick vector which is found at offset 24, and
input our own joystick routine. By the way, the mouse vector is at offset 16.
With the help of this and the information given on the other IKBD commands
in the IKBD.TXT file, you should be able to setup your own mouse routine as
well.

The joystick routine ends with an rts, nothing else, and may not
take more than 1/100 of a second (half a VBL, more than enough time really).
What happens now is that each time the joystick status is changed, the ST will

jump to our joystick routine. Once there, a0 will point to three bytes in
memory which contain the status of the joysticks.

The first of these bytes is a header telling us which joystick it was
that did something. The byte will contain $FE if joystick 0 did something, and
$FF if it was joystick 1 (meaning the last bit represents either joystick 0 or
joystick 1). Remember, joystick 0 is the joystick port shared with the mouse,
and joystick 1 is the port exclusively for joysticks. The next two bytes contain
the actual information for the joysticks. The first one holds status for joystick
0, and the other one for joystick 1. The data has this structure

F000RLDU
76543210
(F = fire, R = right, L = left, D = down, U = up)

So if bit 7 is set, the fire button was pressed, if bit 0 is set, the
joystick is moved up, if bit 0, 2 and 7 are set, the joystick is moved up- right
while the fire button is being pressed. Real simple. Here’s a joystick routine
that will simply store the joystick data in memory, two different variables
could have been used instead of course (but this is good practice on
addressing modes).

read_joy
* executes every time joystick information is changed

move.b 1(a0),joy store joy 0 data
move.b 2(a0),joy+1 store joy 1 data
rts

joy ds.b 2 storage for joystick data

That’s it! Well, almost. We must restore our poor system, for one
thing, it would be good to turn the mouse back on :) When we turn on the
joystick, the mouse is turned off. In order to turn it on, we send command $08
to the IKBD, to put the mouse in relative report mode, which would probably
be the default mode for the mouse then. While we’re at it, might be good to
restore the joystick vector as well. For the curious lot out there, mus is
Swedish for mouse, and it’s a suitable short form for mouse as well.

move.l #mus_on, - (a7) pointer to IKBD instruction
move.w #0,- (a7) length of instruction - 1
move.w #25,- (a7) send instruction to IKBD
trap #14
addq.l #8,a7

move.l ikbd_vec,a0 a0 points to old IKBD
vectors

move.l old_joy,24(a0) restore joystick vector

mus_on dc.b $08
dc.l ikbd_vec IKBD vector storage
dc.l old_joy old joy vector storage

Two other commands of the IKBD that might be good to know
about are $1a, which turns off the joystick, and $12 which turns off the
mouse. Let’s say we want to be on the really safe side and not only turn on
joystick reporting but also turn off mouse reporting, it would look thusly

move.l #joy_on,- (a7) pointer to IKBD instructions
move.w #1,- (a7) instruction length - 1
move.w #25,- (a7) send instruction to IKBD
trap #14
addq.l #8,a7

joy_on dc.b $14,$12

Note how the extra parameters are just appended to the command
list, and the update of the instruction length parameter to reflect the new
command list length. Here comes the source of the program, hold on!

jsr initialise

* pre- shifting sprite
move.l #spr_dat,a0 original sprite data
add.l #34,a0 skip palette
move.l #sprite,a1 storage of pre- shifted sprite

move.l #32- 1,d0 32 scan lines per sprite
first_sprite

move.l (a0)+,(a1)+ move from original to
pre- shifted

move.l (a0)+,(a1)+
move.l (a0)+,(a1)+
move.l (a0)+,(a1)+ 32 pixels moved
add.l #8,a1 jump over end words
add.l #144,a0 jump to next scan line
dbf d0,first_sprite

* the picture sprite has been copied to first position in pre- shift

move.l #sprite,a0 point to beginning of storage
area

move.l #sprite,a1 point to beginning of storage
area

add.l #768,a1 point to next sprite position

move.l #15- 1,d1 15 sprite positions left
positions

move.l #32- 1,d2 32 scan lines per sprite
line

move.l #4- 1,d3 4 bit planes
plane

move.w (a0),d0 move one word

roxr #1,d0 pre- shift
move.w d0,(a1) put it in place

move.w 8(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,8(a1) put it in place

move.w 16(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,16(a1) put it in place

add.l #2,a0 next bit plane, also clears X flag
add.l #2,a1 next bit plane

dbf d3,plane

add.l #16,a1 next scan line
add.l #16,a0 next scan line

dbf d2,line

dbf d1,positions
* pre- shift of sprite done, all 16 sprite possitions saved in sprite

* pre- shifting mask
move.l #spr_dat,a0
add.l #34+160*32,a0 skip palette and sprite
move.l #mask,a1 load up mask part

move.l #32- 1,d0 32 scan lines per sprite
first_mask

move.l (a0)+,(a1) move from original to pre-
shifted

not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l #$ffffffff,(a1)+ fill last two words...
move.l #$ffffffff,(a1)+ ... with all 1's

add.l #144,a0 jump to next scan line
dbf d0,first_mask

* the picture mask has been copied to first position in pre- shift

move.l #mask,a0 point to beginning of storage
area

move.l #mask,a1 point to beginning of storage
area

add.l #768,a1 point to next mask position

move.l #15- 1,d1 15 sprite positions left
positions_mask

move.l #32- 1,d2 32 scan lines per sprite
line_mask

move.l #4- 1,d3 4 bit planes
plane_mask

move.w (a0),d0 move one word
roxr #1,d0 pre- shift
or.w #%1000000000000000,d0 make sure most

significant bit set
move.w d0,(a1) put it in place

move.w 8(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,8(a1) put it in place

move.w 16(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,16(a1) put it in place

add.l #2,a1 next bit plane
add.l #2,a0 next plane, clears X flag (bad)

dbf d3,plane_mask

add.l #16,a1 next scan line
add.l #16,a0 next scan line

dbf d2,line_mask

dbf d1,positions_mask
* pre- shift of mask done, all 16 sprite possitions saved in mask

movem.l bg+2,d0 - d7
movem.l d0- d7,$ff8240

move.l #bg+34,a0 pixel part of background
move.l $44e,a1 put screen memory in a1
move.l #7999,d0 8000 longwords to a screen

pic_loop
move.l (a0)+,(a1)+ move one longword

to screen

dbf d0,pic_loop background painted

jsr save_background something in restore buffer

** joy code
move.w #34,- (a7)
trap #14
addq.l #2,a7 return IKBD vector table

move.l d0,ikbd_vec store IKBD vectors
address

move.l d0,a0 a0 points to IKBD vectors
move.l 24(a0),old_joy backup old joystick vector

move.l #read_joy,24(a0) input my joystick vector

move.l #joy_on,- (a7) pointer to IKBD instructions
move.w #0,- (a7) instruction length - 1
move.w #25,- (a7) send instruction to IKBD
trap #14
addq.l #8,a7

** end joystick init

move.l $70,old_70 backup $70
move.l #main,$70 put in main routine

move.w #7,- (a7)
trap #1
addq.l #2,a7 wait keypress

move.l old_70,$70 restore old $70

** joy code
move.l #mus_on, - (a7) pointer to IKBD instruction
move.w #0,- (a7) length of instruction - 1
move.w #25,- (a7) send instruction to IKBD
trap #14
addq.l #8,a7

move.l ikbd_vec,a0 a0 points to old IKBD
vectors

move.l old_joy,24(a0) restore joystick vector
** end shut down

jsr restore

clr.l - (a7)
trap #1 exit

main
movem.l d0- d7/a0 - a6,- (a7) backup registers

jsr restore_background
jsr move_sprite
jsr save_background
jsr apply_mask
jsr put_sprite

movem.l (a7)+,d0- d7/a0 - a6 restore registers

rte

move_sprite
* updates x and y coordinates according to joystick 1
* if fire button pressed, add 1 to colour 0

move.b joy+1,d0 check joystick 1

cmp #128,d0 fire
blt no_fire
add.w #$001,$ff8240
and.b #%01111111,d0 clear fire bit

no_fire

cmp.b #1,d0 up
beq up
cmp.b #2,d0 down
beq down
cmp.b #4,d0 left
beq left
cmp.b #8,d0 right
beq right
cmp.b #9,d0 up- right
beq up_right
cmp.b #10,d0 down- right
beq down_right
cmp.b #6,d0 down- left
beq down_left
cmp.b #5,d0 up- left
beq up_left
bra done

up
sub.w #1,y_coord
bra done

down
add.w #1,y_coord
bra done

left
sub.w #1,x_coord

bra done
right

add.w #1,x_coord
bra done

up_right
sub.w #1,y_coord
add.w #1,x_coord
bra done

down_right
add.w #1,y_coord
add.w #1,x_coord
bra done

down_left
add.w #1,y_coord
sub.w #1,x_coord
bra done

up_left
sub.w #1,y_coord
sub.w #1,x_coord
bra done

done

* avoid going outside screen
cmp #319- 32,x_coord
blt x_right_ok
move.w #319- 32,x_coord

x_right_ok

cmp #0,x_coord
bgt x_left_ok
move.w #0,x_coord

x_left_ok

cmp #199- 32,y_coord
blt y_low_ok
move.w #199- 32,y_coord

y_low_ok

cmp #0,y_coord
bgt y_high_ok
move.w #0,y_coord

y_high_ok
rts

read_joy
* executes every time joystick information is changed

move.b 1(a0),joy store joy 0 data
move.b 2(a0),joy+1 store joy 1 data
rts

apply_mask
* applies the mask to the background

jsr get_coordinates
move.l #mask,a0
mulu #768,d0 multiply position with size
add.l d0,a0 add value to mask pointer

move.l #32- 1,d7 mask is 32 scan lines
maskloop

rept 6 mask is 6*4 bytes width
move.l (a0)+,d0 mask data in d0
move.l (a1),d1 background data in d1
and.l d0,d1 and mask and picture data
move.l d1,(a1)+ move masked picture data to

background
endr
add.l #136,a1 next scan line
dbf d7,maskloop

rts

put_sprite
* paints the sprite to the screen

jsr get_coordinates
move.l #sprite,a0
mulu #768,d0 multiply position with size
add.l d0,a0 add value to sprite pointer

move.l #32- 1,d7 sprite is 32 scan lines
bgloop

rept 6 sprite is 6*4 bytes width
move.l (a0)+,d0 sprite data in d0
move.l (a1),d1 background data in d1
or.l d0,d1 or sprite and background data
move.l d1,(a1)+ move ored sprite data to

background
endr
add.l #136,a1
dbf d7,bgloop

rts

save_background
* saves the background into bgsave

jsr get_coordinates
move.l #bgsave,a0

move.l #32- 1,d7 sprite is 32 scan lines
bgsaveloop

rept 6 sprite is 6*4 bytes width
move.l (a1)+,(a0)+ copy background to

save buffer
endr
add.l #136,a1 next scan line
dbf d7,bgsaveloop

rts

restore_background
* restores the background using data from bgsave

jsr get_coordinates
move.l #bgsave,a0

move.l #32- 1,d7 sprite is 32 scan lines
bgrestoreloop

rept 6 sprite is 6*4 bytes width
move.l (a0)+,(a1)+ copy save buffer to

background
endr
add.l #136,a1 next scan line
dbf d7,bgrestoreloop

rts

get_coordinates
* makes a1 point to correct place on screen
* sprite position in d0.b

move.l $44e,a1 screen memory in a1
move.w y_coord,d0 put y coordinate in

d0
mulu #160,d0 160 bytes to a scan line
add.l d0,a1 add to screen pointer
move.w x_coord,d0 put x coordinate in

d0
divu.w #16,d0 number of clusters in low, bit in

high
clr.l d1 clear d1
move.w d0,d1 move cluster part to d1
mulu.w #8,d1 8 bytes to a cluster
add.l d1,a1 add cluster part to screen

memory
clr.w d0 clear out the cluster value
swap d0 bit to alter in low part of d0

rts

include initlib.s

section data
x_coord dc.w 150
y_coord dc.w 80

spr_dat incbin SHIP.PI1
bg incbin XENON.PI1
old_70 dc.l 0

joy_on dc.b $14
mus_on dc.b $08
ikbd_vec dc.l 0
old_joy dc.l 0

section bss
sprite ds.l 3072 32/2+8*32 bytes * 16 positions / 4 for long
mask ds.l 3072 same as above
bgsave ds.l 192 32/2+8*32 bytes / 4 for long
joy ds.b 2

Yup, another long source code. There are big similarities between
the sprite tutorial though, since we’re basically doing the same thing. The new
things are of course the joystick on and off, which are located between the “*
joy code” comments, after the pre- shiftings . Nothing to say there that hasn’t
been said before. Same with the joystick routine. The move_sprite routine is
all new and deserves attention.

It begins by moving the joystick data to d0. In this case, I only
check joystick 1. First I begin by checking for the fire button, this is done by
seeing if d0 contains a number larger than or equal to 128. If the fire button is
pressed, the 8 th bit (bit 7, start counting from 0 and from the rightmost bit) in
the joystick status byte is set which means that the byte will hold a value
equal to or higher than 128, since %10000000 = 128. Then I clear out the fire
bit so that it won’t bother me anymore.

Next I check for joystick movement. This is done by using the same
method as above. For example, if the joystick is down- left, then bit 1 and 2
are set, meaning the byte will hold value %00000110 = 6. This is the reason
for clearing out the fire bit above. If it hadn’t been cleared, the number would
be either 6 or 128 + 6 = 134 for down- right. So just run through all 8
directional checks to see if any bits are set, if they are not, I just branch right
away to done. If this branch hadn’t been there, the program would just
continue and execute the code associated with joystick up if the joystick
wasn’t moved at all. An early bug that caused me some confusion.

After the coordinates have been changed accordingly, I also check
to see that the sprite isn’t out of bounds, since this could cause a crash and be
generally stupid in all kinds of ways. So just check if the coordinates are right,

and if they’re not, reset them to the closest correct value. If you want a
speedier ship, just increase the speed accordingly, adding more than one to
the coordinates, and also remember to include this in the boundary check, just
as the sprite.

Some of you will probably notice that the ship itself is not 32 scan
lines, although I treat the sprite as such. This has the effect of the ship never
reaching all the way down the screen, since there is some black space worth of
sprite data. This could be easily fixed of course, but I didn’t. Also, two ships
moving might be nice, at first I considered having both the Xenon 2 ship and
the Xenon 1 ship side by side, controlled by two joysticks, but I decided to
keep it simple. However, there should be no big trouble incorporating that,
and changing the fire button perhaps to morph the Xenon 1 ship.

Having two sprites is no harder than having one sprite, the only
thing you have to think about is the order of painting the sprites, the ones
painted first will be painted over by the ones that come next. Yet another cool
thing is to change the look of the sprite as you move it, like in the real Xenon
game, they have the ship tilted sideways and generate rocket fire when it
moves, all you need is a flag to know which state the ship is in and change the
sprite address accordingly.

This means having a sprite picture with not just one ship, but the
ship tilted in directions and with rocket flames, all in all lots of pictures. All of
these sprites will of course fit in one degas picture, so all you need is the
correct offset into this picture depending on what “mode” the sprite is in.
Compare this to the way we address the sprite mask, only in this case it’s a
different sprite (or different look of the sprite, depending on how you see it).

Now you have the tools needed to create a game, or even a demo
for that matter: now go to it! Even though there is still much to learn, the
basics have been covered, all but one thing: music and sound. It is my hope
that this will come soon. But you don’t have to worry about that for now, code
away and the music will be easily incorporated at a later stage.

Usually, you just hook up the music in your VBL routine. On the
Dead Hackers Society page, http: / / dhs.nu, there are two chip editors (at least)
with instructions on how to play the generated music in assembler; Edsynth
and the XLR8. Go take a look at them if you’re curious, there should be no
trouble understanding the code.

perihelion of poSTmortem, 2002- 07- 13

"I love the smell of napalm in the morning… it smells like victory"

- Apocalypse Now

