
The Atari ST M68000 tutorial part 11 – of making the mountain move to
Mohammed

Well well, finally, as promised, we will delve into the technique of sprites; the
essence of a platform or shoot - em- up game, and lots of other stuff. In fact,
anything that needs something moving that is not 3D or real time rendered
(that is, it’s being drawn while the program runs, and not stored previously as
a picture). It was really challenging and great fun to code this one, and it’s
probably the most satisfying coding experience ever, I hope I can convey the
knowledge it brought me.

In the last tutorial, we learned something on pixels, in order to be
able to address a single pixel anywhere, the data must be shifted into a correct
position. Why is this? Because, each instruction except the bit instructions,
deal with at least byte size. What it means is that if we use instructions with
byte size, all pixels “snap” at 8 pixels, because that’s the minimum
addressable size. However, by shifting the data before using it in graphic
instructions, we can in a way address any pixel we want to.

I actually suggest you load up the pre- assembled program, and
both the picture files that comes with the tutorials, the pictures being
AUTUMN.PI1 and SPRITE.PI1. A little note on the pictures, they are in STe
palette, meaning that they will look a bit ugly on a ST, but STeem should
handle this nicely. Yes, the character seen is the same one as in TUT9:
Kenshin. He’s the main character in a Japanimation, a former assassin for the
government who now tries to atone by living a quiet life and helping people.
This series is awesome and has given me much inspiration, the first Kenshin
OVA series is one of the most beautiful pieces of art I’ve ever seen.

So, after you’ve been impressed by the Tai Ji symbol (a.k.a. Yin and
Yang symbol, Yin and Yo in Japanese) bouncing around the screen, you are
eager to learn for yourself, right? As you can see, the background is provided
in the AUTUMN.PI1, and the bouncing ball, which is the sprite, is in SPRITE.PI1.
Actually, only 14 colours are used for the background, the last two being
reserved for the sprite, this isn’t necessary and the sprite may well share
colours with the background. The sprite seems to appear twice, in the
SPRITE.PI1, there are two balls, one of them is the sprite mask, if confusion
occurs, just read on.

Painting the background is easy, just smack in the pixel data and
set the palette, bouncing will be dealt with later, what we need to focus on
now is getting the sprite nicely on the screen, and being able to put it
anywhere on the screen, preferably expressing the location in X and Y
coordinates for human compatibility. How exactly to put the sprite data on
screen, the most obvious choice is a move instruction. This won’t do at all
though, check this out.

Screen memory
%00000000 %00001110 first word
%00000000 %00000000 second word
%00000000 %00001011 third word
%00000000 %01010101 fourth word

Pixel colours

$00000000 $0808595C

Sprite data
%00000000 %00000001 first word
%00000000 %00100000 second word
%00000000 %00000000 third word
%00000000 %00001010 fourth word

Pixel colours
$00000000 $00208081

Now, if we move the sprite data onto the graphics memory, we get

Screen memory
%00000000 %00000001 first word
%00000000 %00100000 second word
%00000000 %00000000 third word
%00000000 %00001010 fourth word

Pixel colours
$00000000 $00208081

Move instructions destroy all data and replace it with new, in other
words, the background is completely lost and the sprite has taken over
completely. Doing it like this will also create an ugly squared looking sprite,
since the sprite background will not be transparent (actually rectangular, but
more on this below). This will not do. Or instructions, on the other hand, will
not overwrite the original data, we try an or instruction with the above
configuration

Screen memory
%00000000 %00001111 first word
%00000000 %00100000 second word
%00000000 %00001011 third word
%00000000 %01011111 fourth word

Pixel colours
$00000000 $0828D9DD

Dang! By or:ing in the sprite, we mixed the sprite with the
background, this is also bad since the sprite will not look as it should,
although it will create quite a nice effect and is good if you simply want a
“colour distortion” effect, but we don’t want that now. An exclusive or would
only flip the colours around in strange ways, and an and instruction clears
data. But wait, if we clear out the sprite data, with an and, leaving the
background intact, and then or in the sprite, it would all work. The sprite
mask has the same look as the sprite, but is only two colours. Colour 15 where
the background is, making sure all bits there are set, and colour 0 where the
real sprite form is, making sure all bits are cleared. Have a look at SPRITE.PI1,

and you will see clearly (well, ok, in the picture, the mask is colour 15 and the
background is colour 0, but it will get inverted later, read on …).

Sprite mask
%11111111 11010100 first word
%11111111 11010100 second word
%11111111 11010100 third word
%11111111 11010100 fourth word

Pixel colours
$FFFFFFFF FF0F0F00

All pixels that were colour 0 (background) in the sprite, are now
colour 15 (F), and all pixels that had one colour or another in the sprite are
now colour 0. By and:ing the sprite mask with the background, we will make
sure to clear out all sprite pixels (since they get and:ed with 0) and keeping the
status of all other bits (since they are and:ed with 1). It is imperative that you
understand this step, if you don’t, reread the Boolean algebra part in TUT9,
check some external sources and think again, or send me an e- mail :) After
applying the mask, the screen memory will look like this

Screen memory
%00000000 %00000100 first word
%00000000 %00000000 second word
%00000000 %00000000 third word
%00000000 %01010100 fourth word

Pixel colours
$00000000 $08080900
#bbbbbbbb #bbsbsbss b = background, s = sprite

As you can see, the background has been preserved, while
everything concerning the sprite is wiped out. Now is the time to or in the
sprite data; this instruction will in no way affect the background (since the
background colour in the sprite is 0). This is what it will look like after the or
operation:

Screen memory
%00000000 %00000101 first word
%00000000 %00100000 second word
%00000000 %00000000 third word
%00000000 %01011110 fourth word

Pixel colours
$00000000 $08288981
#bbbbbbbb #bbsbsbss b = background, s = sprite

To summarise; first we take an inverted version of our sprite with
only two colours, and and that with the background. This clears all pixels that
are concerned with the sprite and leaves the background intact. After the

mask is applied, it is safe to or in the sprite data, since the previous clearing
of the sprite pixels, there is no risk of mixing the sprite with the background.
The background in the sprite is colour 0, thus the or instruction will have no
effect on the background, the background part in the mask is colour 15 (all
1’s) and thus the and instruction will not affect the background.

OK, now we know how to put the sprite on screen, but we are still
faced with the problem of not being able to put it anywhere. To solve this, the
sprite and mask data must be shifted. Like with the putpixel, in order to put
the sprite at say 0,2, we need to shift the sprite data right two bits. With the
putpixel, we shifted “real time”, but there is much more data involved in a
sprite, so we’ll be pre- shifting the sprite instead. When using the pre- shifted
method, we assign a storage area that is 16 times larger than the sprite data,
and store the sprite in that area shifted in all possible sixteen combinations
we need.

I see a big ‘?’ in your face right now. Think about it, in the putpixel
routine, we could end up shifting the pixel 15 bits to the right, at most, so
what we do here with the sprite is to store all those possibilities after one
another. When the time comes to put the sprite out, instead of shifting the
original sprite data, all we have to do is access the storage area with the
correct offset. An offset is the value added to the starting address of
something. For example, the middle of the screen is the screen address with
an offset of 100*160+80 = 16080 bytes.

Sprite data
$00001111 …

Sprite storage area
$00001111 … first position, offset 0
$00000111 … second position, offset 1
$00000011 … third position, offset 2
$00000001 … fourth position, offset 3
(the offset number is completely fictional, it’s not even an even

number)

Let’s say we want to put the sprite at 0,2, we know what we have to
do. We have to point to the start of the screen memory, shift the sprite data
right by 2, and put it in place. Say a0 points to the screen memory, and a1 to
the sprite storage area, then we just need to add offset 2 to a1, and a1 will
point to correctly shifted sprite data. Pre- shifting is way faster than loading
up the sprite data in a1, and then shifting it, especially since the sprite data
consists of several words that all need to be shifted. The downside of course is
loss of memory.

Now, there is a problem here, if we have a 32*32 pixel sprite, like in
the sample program, the data for the sprite is 16*32 bytes, arranged like this:

Sprite data
First 16 Last 16 pixels (W = word)
WWWW WWWW first line
WWWW WWWW second line
WWWW WWWW third line

… and so on for a total of 32 lines

When we begin to shift, we want the last bit that goes out the first
word, to be shifted in as the first bit in the fifth word. This is comparable to
the tutorials on scrolling. The last bit that go out the fifth word, should not go
into the first bit of the ninth word, because then a pixel from the first line
would go into the second line, but there is no room to shift it out right on the
first line. So, we have to add a buffer to every line so that no data will be lost
in the shift. In the last shift, the first four words will be all but empty, and the
buffer will be all but full. So the sprite storage area will have to look like this.

Sprite storage area
First 16 Middle 16 Last 16 pixels (B = buffer, word

size)
WWWW WWWW BBBB first line
WWWW WWWW BBBB second line
WWWW WWWW BBBB third line
… and so on for a total of 32 lines and 16 such blocks to cover all

possible shifts

Even though the sprite storage area covers a total of 48 pixels, 16
of these will be 0, thus not affecting the background. See the sprite as a 48
pixel wide block, with only 32 pixels coloured. Within this 48 pixel block, the
32 colour pixels will be shifted more and more to the right as X coordinates
increase, then when it becomes critical, the block will move 16 pixels to the
right in one sweep, and the 32 pixel colour area will be reset, starting the
procedure all over again. Run the TUT11BLK.PRG, to see this clear.

Alright, theory part on pre- shifting done, now we need it in direct
coding practice as well. First off, we’ll need a good instruction with which to
shift. Sure, lsr seems a good choice, but we need to be able to preserve the bit
that gets shifted out, and lsr doesn’t preserve anything. The instruction roxr,
for ROtate eXtended Right, is good in this case. The extended bit is rotated in
from the left, and the bit rotated out the right is saved in the carry and
extended flag. So, by roxr:ing with one each time, we will save what we shift
out, and shift it in the next time around. (btw, when speaking about the user
bits in the status register, flags and bits are used synonymous) Looki looki

(X = extended flag)
d0 = %00001101 X = 0

roxr #1,d0 d0 = %00000110 X = 1
roxr #1,d0 d0 = %10000011 X = 0
roxr #1,d0 d0 = %01000001 X = 1

What we do is to first copy the sprite data to the sprite storage
area, then we take the data from the storage area, rotate extended right with
one, and save that data into the next position of the storage area. What we
have to think about when coding this is that the data from the first word, goes
into the fifth word and so on. In code, it looks like this

move.l #spr_dat,a0 original sprite data

add.l #34,a0 skip palette
move.l #sprite,a1 storage of pre- shifted sprite

move.l #32- 1,d0 32 scan lines per sprite
first_sprite

move.l (a0)+,(a1)+ move from original to
pre- shifted

move.l (a0)+,(a1)+
move.l (a0)+,(a1)+
move.l (a0)+,(a1)+ 32 pixels moved
add.l #8,a1 jump over end words
add.l #144,a0 jump to next scan line
dbf d0,first_sprite

First, point to the sprite data, jump over the palette and load up
the sprite storage area, which is a ds.l 3072: 16 bytes per line, plus 8 for the
buffer totalling 24 bytes per scan line. The sprite is 32 lines and there should
be 16 such blocks. This adds up to 24*32*16 = 12288 bytes, which is 3072
long words. In the loop, just copy data from the sprite picture to the storage
area, the buffer word area is skipped since it contains nothing at this time.
Now comes the challenging part, writing the generic pre- shift.

move.l #sprite,a0 point to beginning of storage
area

move.l #sprite,a1 point to beginning of storage
area

add.l #768,a1 point to next sprite position

move.l #15- 1,d1 15 sprite positions left
positions

move.l #32- 1,d2 32 scan lines per sprite
line

move.l #4- 1,d3 4 bit planes
plane

move.w (a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,(a1) put it in place

move.w 8(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,8(a1) put it in place

move.w 16(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,16(a1) put it in place

add.l #2,a0 next bit plane, also clears X flag
add.l #2,a1 next bit plane

dbf d3,plane

add.l #16,a1 next scan line
add.l #16,a0 next scan line

dbf d2,line

dbf d1,positions

First off, load up the storage area in a0 and a1, and make a1 point
to the next storage area. This one is empty and should contain the sprite data
shifted one bit to the right. Since we have already filled the first position in
the storage area, 15 positions are left. 32 lines to each sprite and 4 bit planes
to each line. Since all these are treated the same way, we only need one big
loop so to speak.

Now comes the fun part, put the first word in d0, this word comes
from the previous storage position. Rotate it, and put it in at the next storage
position. Now the extended flag holds the bit that was shifted out the right,
and this one needs to be shifted in on the left in the first word in the next
word cluster. So, a byte offset of 8 (4 words) is added when fetching and
storing the next word. The buffer must also come into play, so the last word
will get a byte offset of 16. Now, we have pre- shifted three words.

By adding 2 to both a1 and a0 we will be at the next bit plane. It
will also clear the extended flag, which is good because otherwise a bit from
the last word might come over to the first word on the next bit plane, which is
undesirable. Repeat for all four bit planes. We have now moved a line of the
sprite. After the four bit planes have been rotated, a0 and a1 will point to the
first word in the second 16 pixel cluster, or 8 bytes from the beginning of the
data. By adding 16, we will point to the next scan line (16+8 = 24). Repeat for
15 positions. Pretty compact explanation, yes? A graphical representation
follows

Storage area with data, beginning at $0
16 16 16 pixels
WWWW WWWW WWWW
… for 32 lines
0 2 4 6 8 10 12 14 16 18 20 22 byte offset

Storage area without data, beginning at $768
16 16 16 pixels
0000 0000 0000 (each 0 is word size)
… for 32 lines
0 2 4 6 8 10 12 14 16 18 20 22 byte offset

a0 = $0
a1 = $768

move.w (a0),d0
roxr d0 C = leftmost bit from W offset 0
move.w d0,(a1) put rotation in 0 at offset 0

move.w 8(a0),d0 as you see, first word of second
cluster

roxr d0 bit preserved and shifted from
offset 0

move.w d0,8(a1) put it at offset 8

move.w 16(a0),d0 first word last cluster
roxr d0 rotate, carry bit may now be set
move.w d0,16(a1) at offset 16

add.l #2,a0 next bit plane, watch offset
add.l #2,a1 also clears X flag

Finally, a0 and a1 will both be at offset 8, the first word of the first
bit plane, by adding 16 to this, the offset will be 24, the value for a whole line,
effectively putting us at the beginning of the next line. That concludes the
pre- shift of the sprite.

The mask data has to be pre- shifted a bit differently. Where the
sprite colour is, we need the mask to be 0, and where the background is, the
mask must be 1, as explained above. A look at the sprite picture will show that
the sprite colour area is colour 15, all 1’s, and the background is colour 0, all
0’s. For the mask to be correctly pre- shifted, we need to invert it, making the
background all 1’s and the sprite colour area all 0’s. When shifting, we must
also always be shifting in 1’s, not 0’s as the case was with the sprite data.

The instruction not, for NOT :), will take any value and invert it,
this means changing all 1’s to 0’s and all 0’s to 1’s. In order to have all bits
except those concerning the sprite colour area set, we must make sure to put
1’s in the buffer area. Also, at the beginning of each plane loop, we must also
make sure that the highest bit of d0 is set, so that 1’s are shifted in. Other
than that, the sprite and mask pre- shift share ideas. The mask area is as big
as the sprite area. Even though this isn’t necessary since all bit planes in the
sprite look alike, we could have reduced the size by ¾, but for ease of
understanding, this was not done.

move.l #spr_dat,a0
add.l #34+160*32,a0 skip palette and sprite
move.l #mask,a1 load up mask part

move.l #32- 1,d0 32 scan lines per sprite
first_mask

move.l (a0)+,(a1) move from original to pre-
shifted

not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l #$ffffffff,(a1)+ fill last two words...

move.l #$ffffffff,(a1)+ ... with all 1's

add.l #144,a0 jump to next scan line
dbf d0,first_mask

* the picture mask has been copied to first position in pre- shift

move.l #mask,a0 point to beginning of storage
area

move.l #mask,a1 point to beginning of storage
area

add.l #768,a1 point to next mask position

move.l #15- 1,d1 15 sprite positions left
positions_mask

move.l #32- 1,d2 32 scan lines per sprite
line_mask

move.l #4- 1,d3 4 bit planes
plane_mask

move.w (a0),d0 move one word
roxr #1,d0 pre- shift
or.w #%1000000000000000,d0 make sure most

significant bit set
move.w d0,(a1) put it in place

move.w 8(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,8(a1) put it in place

move.w 16(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,16(a1) put it in place

add.l #2,a1 next bit plane
add.l #2,a0 next plane, clears X flag (bad)

dbf d3,plane_mask

add.l #16,a1 next scan line
add.l #16,a0 next scan line

dbf d2,line_mask

dbf d1,positions_mask

Unlike the sprite pre- shift where we could set up the storage area
with direct memory moves from the sprite picture to the storage area, here we
move data, and then perform the not instruction to invert the data. Also,
instead of just skipping the buffer area like in the sprite, here we fill it with
1’s. The bit plane loop is almost identical, with the one exception that the first

shift must be guaranteed to shift in a 1, not a 0. A simple or instruction will
make sure the most significant bit is set. That was that, all pre- shifting done.

The method which we use to get the coordinates is the exact one
found in tutorial 10. So when we send in our coordinates, we will be provided
with a pointer to the screen address, and the number of shifts to be done in
d0. The number in d0 is an offset for the sprite data and mask data. By
putting the address to the sprite data in an address register, multiplying d0
with 768 and adding that to the address register, we will get a pointer to
correctly shifted sprite data. The reason for the number being 768 is that it is
the size of a sprite block.

OK, now comes the problem of actually moving the sprite. We can
put a sprite at any coordinate we want, but we can’t move it yet. A simple
bounce routine here, the sprite will move with a certain X speed and a certain
Y speed, and change direction when it hits “walls” (edges of the screen). What
we need is a heading, and a speed. For simplicity, we express the heading as
either 1 or 0 for both X and Y respectively. 1 is towards bottom right and 0 is
towards upper left. X heading is either right or left, and Y heading either up or
down. The X and Y speed is how many pixels to move the sprite in desired
direction each VBL. So with an X heading of 1, and an X speed of 2, the sprite
would move 2 pixels right each VBL.

What the move routine needs to do is to add X and Y coordinates
in accordance with heading and speed, as well as checking for wall hits. When
a wall hit occurs, the sprite must change direction. A change in direction
simply means flipping between 1 or 0 in heading. This might be a good time to
tell about the equ, for EQUals method. Any label can have an equ applied to it,
meaning that whenever one uses the label, it is replaced by the equ. Easy huh?

number equ 2
move.l #number,d0 same as move.l #2,d0

One can say that equ’s, are constants. It’s good practice to have as
many equ’s as possible, because if you realize you have to change a constant,
you only need to change it in one place instead of every place the constant
appears. X speed and Y speed is a good example (unless you want variable
speed), X coordinate is a terrible thing, since it needs to change all the time.
Actually, I think it’s best to express the move routine in pseudo code first.

If (x_coord > 319 – 32 – x_speed + 1) Then
x_heading = 0

If (x_coord < 0) Then
x_heading = 1

If (y_coord > 199 – 32 – y_speed + 1) Then
y_heading = 0

If (y_coord < 0) Then
y_heading = 1

First we check to see if the heading needs change, as long as the
sprite is in any way outside the screen coordinates, we need to change the
heading. Since we check the heading before we move the sprite, and move the
sprite before drawing it, the sprite will never be drawn off screen. The only

trouble here is where all numbers come from. Think of it first without x_speed
added, every VBL the sprite just moves one pixel. Then the formula is x_coord
> 319 – 32. This is easy to grasp, the X coordinate must not be more than the
screen can hold, which is 319, minus the width of the sprite itself of course,
which is 32.

The so called “hot spot” of the sprite is the upper left corner. This
is the point against which all sprite coordinates are measured. We say that the
sprite is at coordinates 13,13, but this really means that the sprite hot spot is
at 13,13. Exactly what pixels the sprite inhabits is unknown to us, since the
sprite can have any form, but for simplicity, we think of the sprite as a square,
with the coordinates in the upper left corner. Thus, when seeing if the sprite
hits the right wall, we take the coordinates of the upper left corner, the hot
spot, and add the width of the sprite.

The x_speed is also to be taken into account. Imagine the sprite
moving with 100 pixels per VBL, then the sprite will be way outside the screen
if it’s anywhere over the right half of the screen, so the sprite is only ok if it’s
on the left half of the screen, obviously, the speed must be taken into account.
Think of the speed as just enlargement to the sprite. The Y check works
exactly the same way, but with a different max coordinate for obvious
reasons. It looks a bit different in assembly language though.

cmp #319- 32- x_speed+1,x_coord
blt x_right_ok see if x is < 319- 32 for width
move.w #0,x_heading if x >=319, change

heading
x_right_ok

cmp #0,x_coord
bgt x_left_ok see if x is > 0
move.w #1,x_heading if x <=0, change

heading
x_left_ok

cmp #199- 32- y_speed+1,y_coord
blt y_low_ok see if y is < 199- 32 for lines
move.w #0,y_heading if y >=199, change

heading
y_low_ok

cmp #0,y_coord
bgt y_high_ok see if y is > 0
move.w #1,y_heading if y <=0, change

heading
y_high_ok

We check if the X coordinate is lesser than the number, and if it is,
it’s ok and a little branch will skip the changing of the X heading. Whereas the
pseudo code’s If statements took place if the check was true, our checks affect
if the statements are false. This may look messy, but it’s really quite simple,

just take a second look at it. We also need to update the coordinates, here’s
some more pseudo code.

If (x_heading = 0) Then
x_coordinate = x_coordinate – x_speed

Else
x_coordinate = x_coordinate + x_speed

If (y_heading = 0) Then
y_coordinate = y_coordinate – y_speed

Else
y_coordinate = y_coordinate + y_speed

No problem there, just change the coordinates according to speed
and heading. In assembly language it becomes more troublesome though.

cmp #0,x_heading check x heading
bne x_move_right if 1, move right, otherwise left
sub.w #x_speed,x_coord move sprite left
bra x_move_done done moving sprite in x

x_move_right
add.w #x_speed,x_coord move sprite right

x_move_done

cmp #0,y_heading check y heading
bne y_move_down if 1, move down, otherwise up
sub.w #y_speed,y_coord move sprite up
bra y_move_done done moving sprite in y

y_move_down
add.w #y_speed,y_coord move sprite down

y_move_done

First, a check to see if X heading is 0, if it is, move to the left,
otherwise move to the right. If we move to the left, we subtract the X
coordinate by the X speed, and we must also make sure to jump past the move
to the right. The Y part is exactly as the X part. Again, just look one more time
at the code and if it seems confusing, write it down on paper if you must and
go through the different possible branches, it’s not too complex once you
structuralize it.

Hoah, this takes time to explain, hope you’re still with me ‘cus we
are almost done. Now we know how to pre- shift, apply the sprite and move it.
One would think that we have all we need, there is just one more thing to take
into account. If we would apply the things we know and fire away, we would
have a sprite that moves over the screen and leaves a trail. The damn thing
will never go away, making it most ugly. Why? Because the background must
be restored when the sprite has passed it.

So, on every VBL, the background must first be restored, then it
must be saved after the sprite coordinates are updated, since the save and
restore routine is dependent on the sprite coordinates. Then we can paint the
sprite. The save routine just copies a sprite sized block from the screen

memory into a save buffer, and the restore routine copies the data from the
buffer onto the screen.

What we have now is a main routine that restores background,
moves the sprite (rather updates the sprite coordinates), saves the
background, applies the mask and lastly paints the sprite. All of this is so fast,
that we don’t even have to bother with double buffering, so we pull a fast one
and just skip that. Here comes the entire source code, don’t panic, most of the
stuff will be familiar.

x_speed equ 2 how many x coord to move each VBL
y_speed equ 1 how many y coord to move each VBL

jsr initialise

* pre- shifting sprite
move.l #spr_dat,a0 original sprite data
add.l #34,a0 skip palette
move.l #sprite,a1 storage of pre- shifted sprite

move.l #32- 1,d0 32 scan lines per sprite
first_sprite

move.l (a0)+,(a1)+ move from original to
pre- shifted

move.l (a0)+,(a1)+
move.l (a0)+,(a1)+
move.l (a0)+,(a1)+ 32 pixels moved
add.l #8,a1 jump over end words
add.l #144,a0 jump to next scan line
dbf d0,first_sprite

* the picture sprite has been copied to first position in pre- shift

move.l #sprite,a0 point to beginning of storage
area

move.l #sprite,a1 point to beginning of storage
area

add.l #768,a1 point to next sprite position

move.l #15- 1,d1 15 sprite positions left
positions
move.l #32- 1,d2 32 scan lines per sprite

line
move.l #4- 1,d3 4 bit planes

plane
move.w (a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,(a1) put it in place

move.w 8(a0),d0 move one word
roxr #1,d0 pre- shift

move.w d0,8(a1) put it in place

move.w 16(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,16(a1) put it in place

add.l #2,a0 next bit plane, also clears X flag
add.l #2,a1 next bit plane

dbf d3,plane

add.l #16,a0 next scan line
add.l #16,a1 next scan line

dbf d2,line

dbf d1,positions
* pre- shift of sprite done, all 16 sprite possitions saved in sprite

* pre- shifting mask
move.l #spr_dat,a0
add.l #34+160*32,a0 skip palette and sprite
move.l #mask,a1 load up mask part

move.l #32- 1,d0 32 scan lines per sprite
first_mask

move.l (a0)+,(a1) move from original to pre-
shifted

not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l (a0)+,(a1)
not.l (a1)+ invert the mask data
move.l #$ffffffff,(a1)+ fill last two words...
move.l #$ffffffff,(a1)+ ... with all 1's

add.l #144,a0 jump to next scan line
dbf d0,first_mask

* the picture mask has been copied to first position in pre- shift

move.l #mask,a0 point to beginning of storage
area

move.l #mask,a1 point to beginning of storage
area

add.l #768,a1 point to next mask position

move.l #15- 1,d1 15 sprite positions left

positions_mask
move.l #32- 1,d2 32 scan lines per sprite

line_mask
move.l #4- 1,d3 4 bit planes

plane_mask
move.w (a0),d0 move one word
roxr #1,d0 pre- shift
or.w #%1000000000000000,d0 make sure most

significant bit set
move.w d0,(a1) put it in place

move.w 8(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,8(a1) put it in place

move.w 16(a0),d0 move one word
roxr #1,d0 pre- shift
move.w d0,16(a1) put it in place

add.l #2,a0 next bit plane, clears X flag (bad)
add.l #2,a1 next bit plane
dbf d3,plane_mask

add.l #16,a0 next scan line
add.l #16,a1 next scan line

dbf d2,line_mask

dbf d1,positions_mask
* pre- shift of mask done, all 16 sprite possitions saved in mask

movem.l bg+2,d0 - d7
movem.l d0- d7,$ff8240

move.l #bg+34,a0 pixel part of background
move.l $44e,a1 put screen memory in a1
move.l #7999,d0 8000 longwords to a screen

pic_loop
move.l (a0)+,(a1)+ move one longword

to screen
dbf d0,pic_loop background painted

jsr save_background something in restore buffer

move.l $70,old_70 backup $70
move.l #main,$70 put in main routine

move.w #7,- (a7)
trap #1

addq.l #2,a7 wait keypress

move.l old_70,$70 restore old $70

jsr restore

clr.l - (a7)
trap #1 exit

main
movem.l d0- d7/a0 - a6,- (a7) backup registers

jsr restore_background
jsr move_sprite
jsr save_background
jsr apply_mask
jsr put_sprite

movem.l (a7)+,d0- d7/a0 - a6 restore registers

rte

move_sprite
* moves the sprite one pixel in x and y
* see if any headings need to be changed

cmp #319- 32- x_speed+1,x_coord
blt x_right_ok see if x is < 319- 32 for width
move.w #0,x_heading if x >=319, change

heading
x_right_ok

cmp #0,x_coord
bgt x_left_ok see if x is > 0
move.w #1,x_heading if x <=0, change

heading
x_left_ok

cmp #199- 32- y_speed+1,y_coord
blt y_low_ok see if y is < 199- 32 for lines
move.w #0,y_heading if y >=199, change

heading
y_low_ok

cmp #0,y_coord
bgt y_high_ok see if y is > 0
move.w #1,y_heading if y <=0, change

heading
y_high_ok
* all eventual heading changes now made

* move sprite coordinates (change coordinates)
cmp #0,x_heading check x heading
bne x_move_right if 1, move right, otherwise left
sub.w #x_speed,x_coord move sprite left
bra x_move_done done moving sprite in x

x_move_right
add.w #x_speed,x_coord move sprite right

x_move_done

cmp #0,y_heading check y heading
bne y_move_down if 1, move down, otherwise up
sub.w #y_speed,y_coord move sprite up
bra y_move_done done moving sprite in y

y_move_down
add.w #y_speed,y_coord move sprite down

y_move_done
* finnished moving sprite

rts

apply_mask
* applies the mask to the background

jsr get_coordinates
move.l #mask,a0
mulu #768,d0 multiply position with size
add.l d0,a0 add value to mask pointer

move.l #32- 1,d7 mask is 32 scan lines
maskloop

rept 6 mask is 6*4 bytes width
move.l (a0)+,d0 mask data in d0
move.l (a1),d1 background data in d1
and.l d0,d1 and mask and picture data
move.l d1,(a1)+ move masked data to

background
endr
add.l #136,a1 next scan line
dbf d7,maskloop

rts

put_sprite
* paints the sprite to the screen

jsr get_coordinates
move.l #sprite,a0
mulu #768,d0 multiply position with size
add.l d0,a0 add value to sprite pointer

move.l #32- 1,d7 sprite is 32 scan lines
bgloop

rept 6 sprite is 6*4 bytes width
move.l (a0)+,d0 sprite data in d0
move.l (a1),d1 background data in d1
or.l d0,d1 or sprite and background data
move.l d1,(a1)+ move ored sprite data to

background
endr
add.l #136,a1
dbf d7,bgloop

rts

save_background
* saves the background into bgsave

jsr get_coordinates
move.l #bgsave,a0

move.l #32- 1,d7 sprite is 32 scan lines
bgsaveloop

rept 6 sprite is 6*4 bytes width
move.l (a1)+,(a0)+ copy background to

save buffer
endr
add.l #136,a1 next scan line
dbf d7,bgsaveloop

rts

restore_background
* restores the background using data from bgsave

jsr get_coordinates
move.l #bgsave,a0

move.l #32- 1,d7 sprite is 32 scan lines
bgrestoreloop

rept 6 sprite is 6*4 bytes width
move.l (a0)+,(a1)+ copy save buffer to

background
endr
add.l #136,a1 next scan line
dbf d7,bgrestoreloop

rts

get_coordinates
* makes a1 point to correct place on screen
* sprite position in d0.b

move.l $44e,a1 screen memory in a1
move.w y_coord,d0 put y coordinate in

d0
mulu #160,d0 160 bytes to a scan line
add.l d0,a1 add to screen pointer
move.w x_coord,d0 put x coordinate in

d0
divu.w #16,d0 number of clusters in low, bit in

high
clr.l d1 clear d1
move.w d0,d1 move cluster part to d1
mulu.w #8,d1 8 bytes to a cluster
add.l d1,a1 add cluster part to screen

memory
clr.w d0 clear out the cluster value
swap d0 bit to alter in low part of d0

rts

include initlib.s

section data
x_coord dc.w 0
y_coord dc.w 0
x_heading dc.w 1
y_heading dc.w 1

spr_dat incbin SPRITE.PI1
bg incbin AUTUMN.PI1
old_70 dc.l 0

section bss
sprite ds.l 3072 32/2+8*32 bytes * 16 positions / 4 for long
mask ds.l 3072 same as above
bgsave ds.l 192 32/2+8*32 bytes / 4 for long

The longest source to date, I’m truly starting to doubt the wisdom
of putting the source code here as well as in a separate file. Anyways, starting
from beginning going down, this is what it’s all about. The first two lines are
the X and Y speed, you may play around with these values to your hearts
content, of course, setting them both to the same value will make the sprite
move in 45 degrees, while any other values will make the sprite move
differently.

Then, the pre- shifting of the sprite and the mask, this has been
dealt with extensively and there is nothing more to add. After this, the

background is also prepared, it’s just another put - degas- file- in- screen-
memory. Note here, that there is a background save, this is to make sure
something is in the save buffer before starting the main routine, otherwise the
main routine would start off by “restoring” a blank area, effectively deleting a
sprite sized block of the screen.

All preparations are done, just install the main routine, as
described in tutorial 9. Put our main routine in the $70 vector, to have it
executed every VBL. Wait for a key press, during which the main routine will
execute continuously, and make a clean exit. Now, take note of how nice and
tidy the main routine is, it just consists of subroutine calls, making the
structure of the program very easy to read, and isolating each major part of
the program for ease of reading.

Each subroutine in turn relies upon the get_coordinates routine,
which translates the x_coord and y_coord into data intelligible to the program.
As you can see in the comments at the start of the get_coordinates subroutine,
what the routine does is to put a pointer to the screen memory in a0 and the
sprite position (offset) in d0.b (meaning the least significant 8 bits of the d0
register). Since each subroutine relies upon the get_coordinates routine, if a
bug is detected in the coordinate routine, it will only have to be dealt with in
one place.

The save/res tore background routines are short and simple and do
little. They begin by calling the get_coordinates routine in order to get a screen
pointer, the sprite position is uninteresting since they both deal with the
entire sprite block.

The sprite and mask routines are very similar. Both begin by calling
the get_coordinates routine, in order to get a screen pointer and a sprite
position. Then either the sprite or mask area is loaded as appropriate, and the
sprite position applied as an offset. Then comes a loop of moving data from
the background and sprite or mask. Then this data is either and:ed or or:ed as
appropriate. The result is put back in the screen memory.

Well, that is that. I haven’t gone into everything in minute detail,
but by now you shouldn’t have to be baby nursed through every operation.
The source code has many fun things you can do with it yourself, so test
around some in the critical areas. The obvious change is the speed change,
then, you can try commenting out some things in the main routine, and
change an or to a move in the sprite routine for example. I think it’s a good
idea to play around some with the source code, and try to predict the changes,
in this way, you’ll really understand the underlying mechanics.

The next tutorial will probably be a very small one, I’m even
considering of calling it tutorial 11 part B, and might cover the well known
“infinite trail” of sprites, since it’s ridiculously easy. Somewhere soon I
suppose I’ll do one on joystick and perhaps also mouse operation. I won’t
promise anything though. Big thanks again go out to Bruno Padinha, for
providing valuable feedback and hitting me on the head. Damn, now I have to
think of a good quote as well, this part is the hardest :)

perihelion of poSTmortem, 2002- 07- 06

“Is it possible that we two, you and I, have grown so old and
inflexible that we have outlived our usefulness? Would that constitute … a
joke?”

- Star Trek VI, the Undiscovered Country

Last edited 2002- 07- 12

