
The Atari ST M68000 tutorial part 10 – of lighting a candle (and casting a
shadow)

Hello again! I just got four Jaguar games from Aldebaran, he’s away over the
midsummer feast so he was kind enough to leave me four Jaguar titles, since I
own a Jaguar but have no games, heh … I thought I’d wait until tomorrow before
knocking myself out though, and do some good right now (or perhaps it’s
because the TV is blocked). Ahh, I’ve gotten hold of the new Nightwish CD;
Century Child, if you don’t own it already, make sure to do so! They play Finnish
metal combined with real cute songs and the main singer is schooled in classic
opera, so they have a real cool sound and are probably my favourite musical
artists.

We’re up to tutorial number 10; which makes me very glad and proud
over the work achieved. This had not been possible without the support of
readers and other VIP’s. To celebrate the tenth “anniversary”, I’m going to give
you something special; a putpixel routine. Actually, that statement was almost
meant as a kind of ironic, funny statement. I mean, not until tutorial number 10
do we learn how to code a putpixel routine, in the PC’s MCGA mode for example,
this is something you hardly have to learn, it’s implied. However, as anyone who
knows this much about programming the ST will know, coding putpixel for the
ST is a pain in the butt.

The putpixel will hopefully be a prequel to a tutorial on sprites.
Sprites, by the way, are anything that moves on the screen, such as a little
spaceship, a funny rabbit or just a bouncing ball. A putpixel routine is a routine
designed to put a single pixel on the screen, so on the ST, it lights a single dot in
one of 16 colours. To achieve this, four bits have to be changed in four different
places in memory, and nothing else must be changed in the screen memory, else
to much will be changed.

Let’s first see how we will know which pixel to change. We want to be
able to provide information in coordinates, like pixel 160,100, which is about the
middle of the screen. The ST would treat any such coordinates with a big
question mark, so we have to find a way to translate the coordinates. All pixels
come after one another in the screen memory, starting with the top left one, and
ending with the bottom right.

This means that X value is of course worth 1 position, since pixel 2,0
is the third pixel on screen. Each Y value is worth as much as the number of X
coordinates on one scan line, in the case of ST low resolution; 320. So if we have
the coordinate 160,100, that would be the 160 + 100 * 320 = 32161 th pixel on
screen (one extra is added to the value since we start counting from 0). The total
number of pixels on screen is 320 * 200 = 64000 pixels, which is about twice as
much as 32160, so the formula seems to work. However, this won’t work on a ST,
because we can’t simply count pixels that easily.

The information for a single pixel is contained in four bits in four
consecutive words, one bit in each word. So, instead what we need to know is at
what word the first bit is, and which bit exactly it is we want to deal with. There
are 16 bits in each word, by dividing our X value with 16, we will get the number

of word clusters to count in the result, and the exact bit in the remainder.
Here’s why: suppose we want the 19 th pixel, this would mean jumping

over the first word cluster, which contains information for 16 pixels, and then
manipulate the third most significant bit in the next word cluster. 19 / 16 =
1.1875, which means we get the result 1 and the remainder 16 * 0.1875 = 3, it
works! So, given the ST’s screen memory configuration, how exactly will we treat
coordinate 160,100?

We assume the screen memory points to the start of the screen
memory. First, the Y coordinate, which is the simplest; each scan line is 160
bytes, so multiply the Y coordinate with 160 and add it to the screen address.
Then divide the X value with 16, multiply the result with 8 and add to the screen
memory. Why 8? Because each word cluster that we are to jump over is 8 bytes;
two bytes to a word and four consecutive words. Now, the screen memory points
to the first word of the four consecutive words we need to alter, in each word we
want to alter one bit. The exact bit is obtained from the remainder of the X
division. There may be other intricate methods, but this one is robust,
straightforward and good for learning. Supposing a0 points to the beginning of
screen memory, d0 holds the X- coordinate and d1 holds the Y- coordinate, this is
how it’s done.

mulu.w #160,d1 160 bytes to a scan line
add.l d1,a0 add y value to screen memory
divu.w #16,d0 number of clusters in low, bit in

high
clr.l d1 clear d1
move.w d0,d1 move cluster part to d1
mulu.w #8,d1 8 bytes to a cluster
add.l d1,a0 add the cluster part to screen

memory
clr.w d0 clear out the cluster value
swap d0 put the bit to alter in low part of d0

There is some magic worked here with high and low parts of the data
registers. With high and low part, we mean the two first, and two last bytes of the
register, thus the high part is the first 16 bits, and the low part the last 16 bits
(reading from left to right). By performing instructions with word size, you only
affect the lower part of a register, and leave the higher part unchanged.

The divu instruction, leaves the result in the low part and the
remainder in the high part of the register. After the divu, the move.w will only
move out the lower part, the cluster part, of d0. Following is a multiplication on
the cluster value, and an addition to screen memory. Finally, clear out the cluster
part of d0, and a swap instruction. The swap instructions flips the high and low
part of a register, so now d0 neatly holds only the value for the bit to be changed,
and a0 points to the correct place.

So, now that we know where to change, how do we know what to
change? We will have a value between 0 and 15, that is supposed to be put in

those four bits in the screen memory (the colour of the pixel). We can’t just move
in the data, we could devise some plan with bset and bclr instructions, but that
may be clumsy and will probably involve branches for testing, which is slow.
Instead, we will use our knowledge of masks and Boolean algebra to solve the
problem.

By putting the colour data in the high part of a register, we can then
rotate the least significant bit of the colour into the lower part, and then do a
shift on only the lower part of the register, to put the colour bit in the correct
place; mask prepared! Suppose we have the colour value in d2, and the number
of bits to change in d0, obtained from the example above, this is how it works.

swap d2 put colour value in high part
lsr.l #1,d2 put one bit of colour in shiftable

position
lsr.w d0,d2 shift by number in d0

Memory will perhaps look something like this, d1 = 5.

High part Low part
d2 = %0000000000000000 %0000000000001011
swap d2
d2 = %0000000000001011 %0000000000000000
lsr.l #1,d2
d2 = %0000000000000101 %1000000000000000
lsr.w d0,d2
d2 = %0000000000000101 %0000010000000000

Ah, now the lower part of d2 will hold a terrific mask, we have one bit
set, the one bit that we want to alter in screen memory, a simple or:ing of the
mask will make sure that the bit is set in screen memory, then we just add two to
the screen pointer, and repeat the process. Wrong! Problem is, depending on our
value, we want to either clear or set the bit, as you can see, on the third run
through, the bit should be cleared, not set (the third bit counting from the left in
the colour value is 0). If we just or in the mask, and the we want to clear in the
screen memory, is set to begin with, we will end up with a set bit where we want a
cleared bit. Buh, that sounded awful, example! This is how it will look the third
run through

d2 = %0000000000000001 %0000000000000000

note how the fifth most significant bit in the lower part is not set.

Screen memory = %1111111111111111

By or:ing d2 with the screen memory, we won’t be clearing out the
fifth most significant bit in the screen memory, although we need it to be cleared

in order for the pixel to have the correct value. So, before or:ing in our mask, we
need to make sure the bit is cleared. This is done by and:ing in a mask with all
bits set except the one bit we want to change. Mask preparation looks like this.

move.w #%0111111111111111,d1
ror.w d0,d1

d1 = %11111011111111111

The ror instruction, for ROtateRight, will rotate the register, making
sure that whatever goes out the right (or left) will then come in to the left. Thus,
if the least significant bit is 0, a 0 will me moved in the most significant bit, if it’s
a 1, a 1 will be moved in. The difference between a logical shift and a rotate, is
that a logical shift will move in 0’s, while rotate will move in whatever went out.
Examine the INSTRSET.TXT if you wish to further your knowledge on this, there
are also arithmetic shifts, but I don’t use them here. Now, by first and:ing in the
clear mask, we can then safely or in our pixel mask, like so.

swap d2 colour in the high part of d2
move.w #%0111111111111111,d1
ror.w d0,d1 clear mask prepared

lsr.l #1,d2 shift in the next colour bit
ror.w d0,d2 shift colour bit into position
and.w d1,(a0) prepare with mask (bclr)
or.w d2,(a0)+ or in the colour
 clr.w d2 clear the old used bit

Then just repeat that over and over, or rather, three times more. The
only thing not covered before is the last line, clearing out the old used bit,
without this, remnants might be left on the next time around. This is one way of
putting a pixel to screen. Bit planes make a putpixel routine so incredibly slow
and clumsy. This though, is just a generic putpixel routine, a pixel routine
designed for a specific purpose might be much faster, involving only one bit
plane perhaps. You don’t have to mess around with all four bit planes every time,
say you only want to use four colours for your stuff, then just leave two bit
planes alone, since they aren’t needed, this will speed up things. This is the entire
putpixel routine.

putpixel:
* a0 screen address
* d0 X coordinate
* d1Y coordinate
* d2 colour

mulu.w #160,d1 160 bytes to a scan line

add.l d1,a0 add y value to screen memory
divu.w #16,d0 number of clusters in low, bit in

high
clr.l d1 clear d1
move.w d0,d1 move cluster part to d1
mulu.w #8,d1 8 bytes to a cluster
add.l d1,a0 add the cluster part to screen

memory
clr.w d0 clear out the cluster value
swap d0 put the bit to alter in low part of d0

* now a0 points to the first word of the bitplane to use
* d0.w holds the bit number to be manipulated in the word

swap d2 colour in the high part of d2
move.w #%0111111111111111,d1
ror.w d0,d1 clear mask prepared

rept 4 do this 4 times
lsr.l #1,d2 shift in the next colour bit
ror.w d0,d2 shift colour bit into position
and.w d1,(a0) prepare with mask (bclr)
or.w d2,(a0)+ or in the colour
 clr.w d2 clear the old used bit
endr

rte return form putpixel
* end putpixel

That was that. A nice putpixel routine to use for our convenience,
slow as hell because of two multiplications and one division. Because this is a
tutorial, and I want to push against practical use, I’ve also written a stupid little
program that puts 50 pixels a second on the screen, like a screen saver. However,
that program also includes some nice tricks so read on!

The ST has a number of system variables, they are found at very low
addresses, starting at $400 and ending at $516. Like the name suggests, these
variables contain lots of special information on the system, and they can provide
quite the shortcut to finding out some information. For example, $44e, called
_v_bas_ad, is a long word containing a pointer to the screen memory (the logical
screen memory). If you just want a quick and dirty program, like this one, and
want to find out the screen address without traps, or hooking it up yourself,
simply read the value here.

move.l $44e,a0 a0 points to screen memory

There are some other useful system variables, which will be presented

when the need arises. If we want to have a screen saver like program, we want to
be able to output random pixels, right? So we need a way to generate a random
number. Random numbers are usually obtained from reading the system clock,
and then applying some algorithm to the obtained value. We don’t want to mess
with that, especially not when there is a very nice trap that will do the job nicely
for us. Trap number 17 in XBIOS will generate a 24- bit random number and put
it in d0.

move.w #17,- (a7) trap number 17, random
trap #14 call XBIOS
addq.l #2,a7 clean up stack

random number in d0

Well, a random number of 24- bits is a number between 0 and
16777216. We want values in the range of 0 to a maximum of 319; 0- 15 for the
colour, 0- 319 for the X coordinate and 0- 199 for the Y coordinate. So how can
we get the random number “down to our level”, so to speak? We could put the
random call in a loop, and in the end of each loop check the random value, and if
it is to big, just repeat the loop. While this would work, it would be so incredibly
slow because the odds of the value falling within parameters are extremely small.
However, by first lessening the value, we gain tremendous time.

As we so well know, the colour value consists of 4 bits. By and:ing the
random value with %1111, we effectively set all bits to 0 except the first four
(which may be 0 or 1, depending on the initial value). Thus, our initial random
value of 24- bits has been reduced to a 4- bit value, making it perfect for our
needs. The X and Y coordinates however, are a bit different, since their
representation does not consist of a complete set of bits (numbers that do so are
the ones immediately before the powers of 2, i.e. 1, 3, 7, 15, 31, 63, 127, 255, etc).
We can’t simply mask off the X coordinates unnecessary bits like we did the
colour, rather we have to keep one bit more than what is needed.

The value 319 uses 9 bits, so we will have to and the X coordinate
with %111111111, but %111111111 = 511, so after masking off the bits in our
random value, we’ll have a number between 0 and 511. Now, we must use a loop
to check the value, and make a new random number if it should prove to be over
319. The odds for the value of being within parameters are greatly increased
though.

get_x
move.w #17,- (a7)
trap #14
addq.l #2,a7 get random number
and.l #%111111111,d0 make it maximum 511
cmp #319,d0
bgt get_x loop until d0 < 320

The instruction bgt will branch if the value compared is greater than.

This loop then, will loop until the value in d0 is less than 319, or rather, not
greater than 319. The Y coordinate is obtained by doing much the same thing,
but we only need to and with 8 bits, because the Y coordinate should be < 200,
and 8 bits make up 255. There, all the theory we need, this is the complete source
of the program.

jsr initialise

move.l $44e,a0 a0 poins to screen memory
move.w #0,$ff8240 black background
move.l #7999,d0

clear
clr.l (a0)
dbf d0,clear clears screen to colour 0

main
move.w #37,- (a7)
trap #14
addq.l #2,a7 wait retrace

get_x
move.w #17,- (a7)
trap #14
addq.l #2,a7 get random number
and.l #%111111111,d0 make it maximum 511
cmp #319,d0
bgt get_x loop until d0 < 320
move.l d0,d7 store x coordinate

get_y
move.w #17,- (a7)
trap #14
addq.l #2,a7 get random number
and.l #%11111111,d0 make it maximum 255
cmp #199,d0 loop until d0 < 200
bgt get_y
move.l d0,d6 store y coordinate

move.w #17,- (a7)
trap #14
addq.l #2,a7 get random number
and.l #%1111,d0 make it maximum 15
move.b d0,d2 put colour number in d2

move.l d7,d0 put x coordinate in d0
move.l d6,d1 put y coordinate in d1

move.l $44e,a0 a0 points to screen memory
jsr putpixel put pixel on screen

cmp.b #$39,$fffc02 space pressed?
bne main if not, repeat main

jsr restore

clr.l - (a7) clean
trap #1 exit

putpixel:
* putpixel routine
* a0 screen adress
* d0 x- coordinate
* d1 y- coordinate
* d2 colour

mulu.w #160,d1 160 bytes to a scan line
add.l d1,a0 add y value to screen memory
divu.w #16,d0 number of clusters in low, bit in

high
clr.l d1 clear d1
move.w d0,d1 move cluster part to d1
mulu.w #8,d1 8 bytes to a cluster
add.l d1,a0 add cluster part to screen memory
clr.w d0 clear out the cluster value
swap d0 bit to alter in low part of d0

* now a0 points to the first word of the bitplane to use
* d0.w holds the bit number to be manipulated in the word

swap d2 colour in the high part of d2
move.w #%0111111111111111,d1
ror.w d0,d1 clear mask prepared

rept 4 do this 4 times
lsr.l #1,d2 shift in the next colour bit
ror.w d0,d2 shift colour bit into position
and.w d1,(a0) prepare with mask (bclr)
or.w d2,(a0)+ or in the colour

 clr.w d2 clear the old used bit
endr

rts
* end putpixel

include initlib.s

Yes, first a normal initialisation, then the neat trick of putting the
screen address in a0, followed up by putting the background black and clearing
the screen. Then, a main routine, the question here is why I didn’t use the $70 as
described in tutorial 9. The reason is a bit farfetched, but valid. Because of the
random loops, there is a theoretical possibility of the main routine taking longer
than 1/50 th of a second, it’s virtually impossible, but it could happen. If this were
to happen, the $70 vector would be called while the previous one were still being
executed, resulting in a crash. With the method I use here, however, there is no
danger of a crash.

Obtaining the X coordinate, as described above, only new thing is
storing the coordinate in d7. This is because the coming random trap for the Y
coordinate will destroy everything in register d0, and then some, register d7
however, is safe. Same goes for the Y coordinate. Finally, the colour value is
obtained, and moved over to d2, then the X and Y coordinates are moved into
their respective registers. These registers could be anything, or a variable or
whatever storage possibility, but the putpixel routine is designed to have the X
coordinate in d0, the Y coordinate in d1, so this is how it’s supposed to be. After
the screen address has been put in a0, all is set for the putpixel call.

The putpixel routine is exactly as described above, so nothing new
there. Signing off with a check for a pressed spacebar, and that concludes the
program. Note how I put the putpixel routine in its’ own subroutine, instead of
including it in the main program, which could also have been done. This results
in tidier code, the downside being that it takes more time to execute, but time is
no issue here.

Speaking of time, I actually think that I’ll fill up some space here with
a bit on optimisation, something that will have to come one day or another
anyway. There are two multiplications and one division in the putpixel routine,
horrible. These can be replaced with shift instructions, but it’s a bit tricky. Each
shift either doubles or halves the value in the register. So how do we do a
multiplication of 160 and a division by 16, where we also keep the remainder?

First, the Y part; here, we want to have a result equalling d1 * 160.
160 is not a value you may shift by, since all shift will produce multiplication
results of 2, 4, 8, 16, 32, 64, 128, 256 and so on. However, 128 + 32 = 160, the
value we want to multiply with, and when things come to multiplication, we are
allowed to split the multiplication in two and add the result; d1*160 = d1*32 +
d2*128. All we have to do is copy our Y coordinate into another register, shift
one register with 5 (multiplication of 32), shift the other with 7 (multiplication of
128) and add the results together.

move.w d1,d3 copy Y coordinate

lsl.w #7,d1 mulu #128,d1
lsl.w #5,d3 mulu #32,d3
add.w d3,d1 add results together
add.l d1,a0 add result to screen address

Note the word size used in all operations. There may still be garbage
in the upper part of d3, but this is never touched in any of the operations. Since
the maximum value we will handle is 199 * 160 = 31840 is less than the
maximum for a word size, which is 2^16 = 65536, it’s ok to only use word size
instructions, it also saves time. Our mulu instruction would take maximum of 70
clock cycles, but in this case I think it’s 42. The technique of shifting takes
12+6 +2*7+6 + 2*5+8 = 58. Heh, seems we wasted time rather than saving. Let
that be an important lesson, sometimes the job’s just not worth doing :)

So now, the X part, first, put the thing in the upper part of d0 with a
swap. Now, with a right shift of 4, we will effectively divide the number by 16,
which is what we want to achieve, the result will be in the upper part, and the
remainder will be in the highest bits in the lower part. Now, what we need to do
is simply to put the remainder down in the lowest bits in d0, so we right shift by
12. The reason for right shifting by 12 is that the remainder takes up a maximum
of 4 bits (remainder maximum is 15; %1111), and 12 + 4 = 16 which is the
number of bits in the lower part of a data register. Unfortunately though, you
can’t shift by 12 when shifting with a number, so we’ll just have to divide the
shift in one 8 and one 4 part, 8 being the highest number you may shift by.

Swap down the result in the lower part, and shift it left by 3 in order
to multiply with 8. We make sure to keep the operation word size in order not to
affect the remainder in the upper part. Then, add the result to the address
register, but, only use a move with word size, in order to only add the multiplied
result, and leave the remainder well alone. Lastly, a clear out of the result part
and a swap to put everything right for the next part of the putpixel.

swap d0 put in upper part
lsr.l #4,d0 divide by 16
lsr.w #8,d0 shift down remainder …
lsr.w #4,d0 … by 12 bits total
swap d0 result in lower part
lsl.w #3,d0 multiply with 8
add.w d0,a0 add result to screen address
clr.w d0 clear out result
swap d0 put remainder in lower part

That was that, now let’s see if this optimisation did us some good.
Unoptimized takes about 140+6 +4 + 40 + 12 + 4 + 4 = 210, the division is an
approximation. Also, I don’t think we really need to move some data to d1 to
manipulate it, so the unoptimized could do some optimization to, but that’s not
too important. Now let’s see what the shift - optimized part will take
4+8+4*2+6 + 8*2+6 + 4*2+4 + 6 + 3*2+8 + 4 + 4 = 88. Even though I’m a bit unsure

of some values here, it’s obviously quite a save in any case. That was a little taste
on how to optimize easy, just replace multiplications and divisions with shifts,
sometimes quite a saving, but not always.

perihelion of poSTmortem, 2002- 06- 23

“I fear I will never find anyone
I know my greatest pain is yet to come
Will we find each other in the dark
My long lost love”
- Nightwish, Beauty of the Beast

