
The  Atari  ST M68000  tutorial  part  9  – of  revealing  the  unseen  and
expanding  our  consciousness  without  the  use  of  illegal  drugs

It’s been  a while  since  the  last  tutorial,  almost  a  month  actually,  sorry  for  that.
I’ve had  a  rough  class  in  school,  but  that’s  no  excuse  since  I found  lots  of  time
to  play  computer  games.  I just  haven’t  felt  up  to  it.  Now, summer  holidays  are
on  and  I plan  on  coding  some  for  myself,  besides  the  tutorials,  but  since  I
need  the  knowledge  myself,  you  can  look  forward  to  a  tutorial  on  sprites  and
how  to  handle  the  joystick  (with  that,  one  could  make  a nice  shoot - em- up
game,  yay). This  tutorial  however,  will, as  promised  some  while  back,  cover
timings.  To have  some  practical  example  to  work  with,  I’ll show  you  how  to  do
the  neat  trick  of  killing  the  upper  and  lower  border.  

But  now  for  something  completely  different;  Boolean  algebra.
Boolean  algebra  states  that  the  world  is  neatly  and  nicely  built  up  of  true  or
false,  black  or  white,  good  or  evil, 1  or  0. The  last  bit  there  applies  to  us  as
computer  programmers.  Boolean  algebra  is  all  about  bit  manipulation.  There
are  a  few so  called  logical  operands,  that  you  can  use  to  compare  two  bits  to
each  other,  and  get  the  result  true  or  false  (1 or  0) from  the  equation.  The
ones  I will cover  here  are  and,  or  and  exclusive  or.  In each  case,  there  are  two
bits  involved,  resulting  in  four  different  combinations  of  those  bits,  this  is  to
hard  to  put  in  words,  see  below  for  how  it  works.

AND
Bit 1 Bit 2 Result
1 1 1
0 0 0
1 0 0
0 1 0

OR
Bit 1 Bit 2 Result
1 1 1
0 0 0
1 0 1
0 1 1

EOR (XOR in  some  other  languages)
Bit 1 Bit 2 Result
1 1 0
0 0 0
1 0 1
0 1 1

For  an  and  operation  to  be  true,  both  operands  need  to  be  true  (in
programming  lingo,  that  means  that  the  result  of  an  and  operation  is  1  if both
bits  are  1). For  an  or  operation  to  be  true,  either  one  or  both  of  the  operands
must  be  true.  For  an  exclusive  or  operation  to  be  true,  either  one,  but  not
both,  of  the  operands  must  be  true.  

These  kinds  of  operations  become  extremely  important  when
doing  stuff  to  the  screen  memory  later  on.  For  example,  imagine  you  have  a



screen  filled  with  colour  (all 1’s  in  the  screen  memory),  and  you  want  to  clear
out  just  that  one  bit  in  a  certain  place.  You  then  prepare  a  so  called  mask,  and
and  it  in.  A mask  really  is  a  quantity,  that  is  to  be  applied  in  a  logical
operation  on  another  quantity,  in  order  to  produce  the  result  you  want,  that  is
one  hard  and  stupid  way  of  explaining  it.  Example  again,  in  this  example,  we
want  to  clear  the  most  significant  bit  and  keep  the  others  intact.

Mask
%01111111

Memory
%11111111

and  mask,memory (pseudo  code)
%01111111

and %11111111

result %01111111

When  performing  and  here,  you  just  compare  bits  one  after
another,  in  the  most  significant  bit,  the  and  operation  becomes  false,  thus  the
result  is  0, and  in  all  other  cases,  it’s  true.  So by having  this  mask,  and  and:ing
it  with  the  screen  memory,  we have  a good  way  of  clearing  away  bits,  we could
create  a  raster  by using  a %10101010  mask.

Each  operation,  that  is  and,  or  and  exclusive  or,  is  good  for
different  things.  As we have  seen,  and  is  good  for  clearing  bits.  Exclusive  or  is
good  for  many  things,  but  the  most  obvious  one  is flipping  bits,  if you
exclusive  or  a  bit  with  1, that  bit  will always  “flip”  (go from  1 to  0, or  0  to  1).
Or is  good  when  you  want  to  set  some  bits,  no  matter  what  value  they  had
before,  it’s  called  setting  a  bit  when  you  make  it  1, or  true.  So and  clears,  or
sets  and  exclusive  or  flips,  that  really  covers  most  things  that  need  to  be  done.
Of course,  you  can  most  likely  come  up  with  devious  plots  to  do  different
things  than  the  ones  we’ve gone  through  here.  

Now, onto  timings!  When  an  exception  occurs,  normal  program
execution  halts  and  the  ST looks  at  a  certain  vector  (memory  position)
depending  on  the  kind  of  exception,  and  then  executes  what  it  finds  there.
What  this  means  is that  when  an  exception  occurs  (exceptions  are  “special
events”)  the  ST looks  for  an  address  pointer  at  a  given  address,  and  jumps
there.  For  example,  when  an  address  error  occurs,  there  is  an  address  error
exception.  The  address  at  $00c,  is the  address  error  exception  address,  so
every  time  there  is  an  address  error,  the  ST will jump  to  the  address  found  at
$00c.  This  address,  we can  change  ourselves.  

into  supervisor  mode
move.l $00c,- (a7) backup  address  error  vector
move.l #address_error,$00c put  our  own  routine  there
make  address  error  occur for  example,  an

uneven  address  call
move.l (a7)+,$00c restore  address  error  vector



into  user  mode
exit

address_error
* our  own  address  error  routine,  replacing  the  normal  address  error  routine

output  error  text,  or  do  something  else,  freedom  of  choice
rte return  from  exception

In normal  cases,  when  there  is  an  address  error,  there  will be  three
bombs  on  the  screen,  but  with  the  little  program  above,  we can  change  what
happens  when  an  address  error  occurs.  We could  make  the  address  error
routine  do  anything,  like  changing  background  colour;  quite  fun,  every  time
there  is  an  address  error,  instead  of  three  bombs,  the  background  colour
changes.  The  program  above  won’t  really  work,  some  things  are  missing,  you
will replace  the  bombs  with  some  effect  of  yours,  but  the  ST will probably
hang  in  all  sorts  of  ways,  it’s  just  provided  as  a  demonstration.  As a  side  note,
whenever  an  exception  occurs,  the  status  of  the  ST is  saved  at  $384  and  a bit
forward,  you  can  read  exactly  about  that  in  ST Internals  pp.  235- 237.  The  ST
Internals  is  a  great  book  by Abacus  Software,  that  describes  much  of  the
hardware  of  the  ST. 

The  ST has  several  timing  pulses,  that  generate  exceptions,  this
means  that  we can  control  these  timing  pulses  and  make  them  work  for  us.  I’ll
explain  the  most  simple  one,  the  $70  vector.  Every  VBL, an  exception  occurs
and  the  ST jumps  to  the  address  stored  at  $70.  So instead  of  using  the  old  way
we’ve been  using  with  doing  a VBL check  at  the  start  of  our  main  routine,  we
can  put  our  main  routine  in  the  $70  vector,  because  it  will start  every  VBL! All
exceptions  must  end  with  a  rte  command,  ReTurnException,  compare  this  to
the  rts  command.  Here’s  a  little  pseudo  code  on  the  usage  of  the  $70  vector.  

into  super  mode
move.l $70,old_70 backup  $70
move.l #main,$70
wait  key  press
move.l old_70,$70 restore  $70
out  of  super  mode
end  program

main
do  stuff
rte

section  data
dc.l old_70

The  thing  here  which  might  seem  a bit  strange  is  the  wait  key  press
and  then  just  a  clean  exit.  Well, the  thing  is  that  once  we hook  up  the  $70
vector,  the  main  routine  will be  executed  every  VBL, so  while  the  ST waits  for  a
key  to  be  pressed,  the  main  routine  will execute.  In a bigger  program,  you  can
start  off  by hooking  up,  say  a  music  routine  on  the  $70  vector,  then  load  in
lots  of  stuff  from  disk,  meanwhile,  the  music  will  play,  then  after  loading  is



finished,  you  change  the  $70  vector  to  the  real  program  so  to  speak.  Endless
possibilities  :) 

Oh,  btw,  the  routine  may  not  take  more  than  1/50 th  of  a  second  to
perform,  because  if it  does,  the  ST will call  the  routine  again,  while  you  are
still  executing  it  and  that  won’t  work.  Use  the  background  colouring  method
from  the  last  tutorial  to  see  how  much  time  your  routine  takes.  Also,  you
must  backup  all  your  registers  and  restore  them  at  start  and  finish  of  the  $70
routine,  otherwise  your  computer  might  crash  for  some  strange  reasons.
Here’s  how  to  do  that  really  simple,  by pushing  and  popping  them  on  and  off
the  stack.  

vbl
movem.l d0- d7/a0 - a6,- (a7) backup  registers
… do  stuff
movem.l (a7)+,d0- d7/a0 - a6 restore  registers
rte exit  vbl  routine

Btw, using  the  $70  vector  for  your  main  instruction  is  slightly
faster  than  the  technique  we used  before.  There  is  a  little  chip  in  the  ST that  is
called  MFP, for  Multi  Functional  Peripheral,  it  can  do  lots  of  cool  stuff,  but
right  now  we’re  interested  in  its  timers,  there  are  four  timers  that  control
timing  pulses,  and  we will be  interested  in  looking  at  one  of  them;  Timer  B.
This  is  the  complete  list  of  the  MFP registers,  all  are  8  bits.  

Address Register
$fffa01 Parallel  port
$fffa03 Active  Edge  register
$fffa05 Data  direction
$fffa07 Interrupt  enable  A
$fffa09 Interrupt  enable  B
$fffa0b Interrupt  pending  A
$fffa0d Interrupt  pending  B
$fffa0f Interrupt  in- service  A
$fffa11 Interrupt  in- service  B
$fffa13 Interrupt  mask  A
$fffa15 Interrupt  mask  B
$fffa17 Vector  register
$fffa19 Timer  A control
$fffa1b Timer  B control
$fffa1d Timer  C & D control
$fffa1f Timer  A data
$fffa21 Timer  B data
$fffa23 Timer  C data
$fffa25 Timer  D data
$fffa27 Sync  character
$fffa29 USART character
$fffa2b Receiver  status
$fffa2d Transmitter  status
$fffa2f USART data



These  are  the  vectors
$134 Timer  A vector
$120 Timer  B vector

To make  things  difficult  fore  some  strange  reason,  Atari  decided
that  the  names  given  to  the  MFP registers  would  be  misnomers,  at  least  I think
they  are.  As I said,  there  are  four  timers.  The  timers  share  some  registers,
here’s  how  that’s  broken  down.  

Timer  A

All of
$fffa19 Timer  A control
$fffa1f Timer  A data

Bit 5 of
$fffa07 Interrupt  enable  A
$fffa0f Interrupt  in- service  A
$fffa13 Interrupt  mask  A

Timer  B

All of
$fffa1b Timer  B control
$fffa21 Timer  B data

Bit 0  of
$fffa07 Interrupt  enable  A
$fffa0f Interrupt  in- service  A
$fffa13 Interrupt  mask  A

Timer  C

Bit 5 of
$fffa09 Interrupt  enable  B
$fffa11 Interrupt  in- service  B
$fffa15 Interrupt  mask  B

So you  see,  timer  A and  B share  some  registers,  and  only  use  one
bit  in  those  shared  registers.  OK, that’s  a  long  list,  but  we don’t  have  to  worry
about  to  many  of  those  address.  We’ll only  be  using  enable  A, mask  A, mask  B,
Timer  B control,  Timer  B data  and  two  vectors;  $70  and  $120,  if that’s  of  any
comfort.  Right  now,  you  are  probably  wondering  your  ass  off,  that’s  ok,  I did
too  the  first  time  I read  about  this  (in the  tutorials  by James  Ingram).  

If you  wonder  about  the  MFP, and  exactly  where  it  is  physically  in
the  ST, it’s  not  necessary  to  know.  You  access  the  timer  addresses  just  as  you
would  any  other  address.  The  ST has  many  small  chips  that  do  stuff,  like
controlling  the  joystick,  the  sound  and  so  on.  The  only  thing  you  need  to
know  to  handle  them  is  where  they  are  in  memory,  every  device  is  “mapped”



to  memory,  so  just  think  about  the  ST as  one  big  list  of  memory  positions,  by
changing  the  memory,  you  change  the  way  the  chips  inside  the  ST work.  

It really  is  due  time  to  do  something  practical  with  all  of  this.
Timers  A and  B can  be  in  one  of  many  modes,  controlled  by Control  A and
Control  B respectively.  For  Timer  B, the  most  interesting  one  is  #8,  event  count
mode.  When  Timer  B is  in  event  count  mode,  it  will interrupt  for  every  Nth
scan  line  , where  N is  the  number  put  in  Timer  B data  (thus  2 means  every
second  scan  line,  1  means  every  scan  line). So if we put  Timer  B in  event  count
mode,  put  number  1 in  Timer  B data,  then  the  instructions  found  at  $120  will
be  executed  on  every  scan  line,  very  much  like  $70  will be  executed  every  VBL.
For  this  reason,  Timer  B is  also  called  HBL, Horizontal  BLank.  

Now this  is  interesting  and  useful,  finally.  In order  to  turn  timer  B
on,  we must  set  bit  5 in  both  Enable  A and  Mask  A. To manipulate  certain  bits
we use  the  commands  bset,  for  Bit SET and  bclr  for  Bit CLeaR. Here’s  how  we
actually  do  to  make  the  ST jump  to  a  certain  address  every  scan  line.  

clr.b $fffffa1b disable  timer  b
move.l #timer_b,$120 move  in  my  timer  b address
bset #0,$fffffa07 turn  on  timer  b in

enable  a
bset #0,$fffffa13 turn  on  timer  b in

mask  a
move.b #1,$fffffa21 number  of  counts,

every  scan  line
move.b #8,$fffffa1b set  timer  b to  event

count  mode

Now the  address  at  #timer_b  will be  jumped  to  every  scan  line.
What  really  fires  away  Timer  B is  the  activation  of  the  Timer  B Control
($fffffa1b)  when  we put  it  in  event  count  mode.  Whenever  we exit  a  Timer  B
exception,  we must  tell  the  ST a bit  more  specifically  than  when  we exit  form  a
$70  exception.  We have  to  clear  the  0 bit  in  in- service  A, like  this.

bclr #0,$fffffa0f tell  ST interrupt  is
done

rte return  from  exception

You  must  also  back  up  all  registers  you  plan  to  use  in  the
interrupt,  or  you’ll  once  again  get  a  crash.  So finally,  we know  how  to  use
Timer  B at  least,  and  we have  the  power  to  know  exactly  at  what  scan  line
we’re  at  (do  we really  understand  this?).  It might  be  very  frustrating  with  all
those  addresses  and  how  they  work  and  so,  actually,  it’s  not  so  much  to
understand,  rather  just  accept.  When  we put  certain  values  into  these
registers,  stuff  will happen,  memorize  the  addresses  to  make  life  easier,  and
just  go  about  your  work.  

So how  do  we kill  borders?  This  also  is  somewhat  “just  do  it  and
realize  it  works”.  In order  to  kill  the  top  and  bottom  border,  you  change  from
PAL to  NTFS exactly  on  the  correct  scan  line,  then  wait  some  for  the  effect  to
kick  in  and  then  back  again.  For  killing  the  top  border,  it’s  the  first  scan  line,
for  killing  the  bottom  border,  it’s  the  last  scan  line.  



For  killing  the  top  border,  you  just  wait  some,  about  15000  clock
cycles,  which  will put  the  electron  beam  on  the  first  scan  line  and  then  toggle
PAL/NTFS, for  killing  the  bottom  border  we check  when  we’re  on  the  last  scan
line,  and  toggle  PAL/NTFS. 

Did  someone  say  toggle  and  check  for  scan  line?  Yes someone  did
(that  was  me),  and  haven’t  we just  learned  how  to  do  just  these  things;  an
exclusive  or  and  Timer  B will do  the  trick! Now we just  need  one  more  thing;
how  to  change  between  PAL and  NTFS, it’s  probably  in  memory  somewhere,  so
whip  out  the  Memory.txt  and  do  a  search.  

The  synchronization  mode  is  controlled  by bit  1  at  address
$ff820a.  If this  bit  is  1, the  system  is  in  PAL (50Hz)  mode,  and  if it’s  0  the
system  is  in  NTFS (60Hz)  mode.  Even  though  this  will work  and  kill  the
borders,  there  will be  lots  of  flickering  due  to  Timer  C and  other  interrupts
interfering.  The  reason  for  the  flicker,  is  that  the  interrupts  will interfere  with
our  time  critical  calculations.  To disable  Timer  C, just  clear  bit  5 of  Mask  B, to
disable  all  interrupts,  we have  to  mess  around  some  with  the  status  register.  

The  status  register  is  made  up  of  16  bits,  the  first  8  bits  being  the
user  bits  and  the  next  8  the  system  bits.  The  user  bits  are  so  called  flags,  and
record  the  result  of  the  latest  operation.  The  system  bits  control  interrupts,  a
trace  bit  and  the  supervisor  bit.  

Bit Name
0 Carry  flag
1 Overflow  flag
2 Zero  flag
3 Negative  flag
4 eXtended  flag
8 Interrupt
9 Interrupt
10 Interrupt
13 Supervisor  bit
15 Trace  bit

The  carry  flag  is  set  when  the  result  of  an  arithmetic  operation  is
too  big to  fit,  this  is  the  same  as  the  little  memory  tag  used  by humans  when
adding  or  multiplying  with  pen  and  paper.  Say we want  to  add  a number  and
put  it  in  d0.b,  and  the  result  is  %100000000  =  256,  9  bits  won’t  fit  in  d0.b,  so
d0.b  will contain  all  zeros  and  the  carry  flag  will be  set.  Also  set  when  a
borrow  occurs  in  a  subtraction.  The  overflow  flag  is  set  when  the  result  of  an
arithmetic  operation  is too  high  to  fit  in  the  destination,  like  the  add  example
above.  The  zero  flag  is  set  when  the  result  of  an  operation  is  zero  (the  strange,
mystic  workings  of  computers,  which  seldom  make  sense  to  the  human  mind
… ) . The  negative  flag  is  set  when  the  result  is negative.  The  extended  flag  is
as  the  carry  flag  in  arithmetic  operations,  otherwise  it  can  serve  special
functions  given  for  each  instruction.  

Note  in  all  the  flags  the  difference  between  arithmetic  operations
and  other  operations.  The  trace  flag  is set  when  the  computer  is  in  trace
mode,  as  it  is  when  debugging,  performing  only  one  instruction  at  a time.

Depending  on  how  the  interrupt  bits  are  set,  the  ST will accept
different  interrupt  levels.  In our  case,  the  only  interesting  interrupt  level  is



when  all  bits  are  set,  because  then  all  interrupts  are  disabled.  So, we want  to
set  bit  8, 9  and  10,  but  not  touch  any  of  the  other  bits.  An or  operation  has  the
power  to  set  some  bits,  and  leave  all  other  alone.  By or:ing  the  status  register
with  %0000011100000000,  we make  sure  that  bits  8  – 10  are  set,  and  that  all
other  bits  are  left  as  they  were.  In order  not  to  have  to  write  that  cumbersome
number  each  time,  we instead  use  $0700,  which  is the  same  number.  Of
course,  the  status  register  must  also  be  backed  up.  I’m tired  of  all  theory,  so
I’ll just  drop  all  source  code  in  your  face  right  now  and  go  through  it.  

jsr initialise

movem.l picture+2,d0 - d7 put  picture  palette  in  d0- d7
movem.l d0- d7,$ff8240 move  palette  from  d0- d7

move.l #screen,d0 put  screen1  address  in  d0
clr.b d0 put  on  256  byte  boundary

move.l d0,a0 a0  points  to  screen  memory

clr.b $ff820d clear  STe extra  bit
lsr.l #8,d0
move.b d0,$ff8203 put  in  mid  screen

address  byte
lsr.w #8,d0
move.b d0,$ff8201 put  in  high  screen

address  byte

move.l #picture +34,a1 a1  points  to  picture

move.l #11199,d0 320*280  /  8  -  1
loop

move.l (a1)+,(a0)+ move  one  longword
to  screen

dbf d0,loop

move.l #backup,a0 get  ready  with  backup
space

move.b $fffa07,(a0)+ backup  enable  a
move.b $fffa13,(a0)+ backup  mask  a
move.b $fffa15,(a0)+ backup  mask  b
move.b $fffa1b,(a0)+ backup  timer  b

control
move.b $fffa21,(a0)+ backup  timer  b  data
add.l #1,a0 make  address  even
move.l $120,(a0)+ backup  vector  $120  (timer  b)
move.l $70,(a0)+ backup  vector  $70  (vbl)

bclr #5,$fffa15 disable  timer  c
clr.b $fffa1b disable  timer  b
move.l #timer_b,$120 move  in  my  timer  b address



bset #0,$fffa07 turn  on  timer  b in  enable  a
bset #0,$fffa13 turn  on  timer  b in  mask  a

move.l #vbl,$70

move.w #7,- (a7) wait  keypress
trap #1
addq.w #2,a7

move.l #backup,a0
move.b (a0)+,$fffa07 restore  enable  a
move.b (a0)+,$fffa13 restore  mask  a
move.b (a0)+,$fffa15 restore  mask  b
move.b (a0)+,$fffa1b restore  timer  b

control
move.b (a0)+,$fffa21 restore  timer  b  data
add.l #1,a0 make  address  even
move.l (a0)+,$120 restore  vector  $120  (timer  b)
move.l (a0)+,$70 restore  vector  $70  (vbl)

jsr restore

clr.l - (a7)
trap #1

vbl
move.w sr,- (a7) backup  status  register
or.w #$0700,sr disable  interrupts
movem.l d0- d7/a0 - a6,- (a7) backup  registers

move.w #1064,d0
pause

nop
dbf d0,pause about  15000  cycles  pause

eor.b #2,$ff820a toggle  PAL/NTSF
rept 8
nop wait  a  bit  ...
endr ... for  effect  to  kick  in
eor.b #2,$ff820a toggle  PAL/NTFS back  again

clr.b $fffa1b disable  timer  b
move.b #228,$fffa21 number  of  counts  
move.b #8,$fffa1b set  timer  b to  event  count  mode

movem.l (a7)+,d0- d7/a0 - a6 restore  registers
move.w (a7)+,sr restore  status  register
rte finnished  interrupt



timer_b
movem.l d0/a0, - (a7) backup  registers
move.l #$fffa21,a0 timer  b counter

address
move.b (a0),d0 get  timer  b count  value
pause_b
cmp.b (a0),d0 wait  for  it  to  change
beq pause_b EXACTLY on  next  line  now!

eor.b #2,$ff820a toggle  PAL/NTSF
rept 8
nop wait  a  bit  ...
endr ... for  effect  to  kick  in
eor.b #2,$ff820a toggle  PAL/NTFS back  again

movem.l (a7)+,d0 /a0 restore  registers
bclr #0,$fffa0f tell  ST interrupt  is  done
rte exit  interrupt

include  initlib.s

section  data

picture incbin kenshin.pi1

section  bss

ds.b 256
screen ds.l 11200

backup ds.b 14

Phew,  that  was  some.  Nice  and  gentle  walkthrough.  First,  just  as
usual,  just  initialise  screen  and  so  on.  The  picture  is 320*280  pixels,  instead  of
the  normal  320*200.  For  compatibility  reasons,  I did  it  in  Degas  format,  so
you’ll have  no  problem  looking  at  it  in  Degas,  but  you’ll  not  see  the  last  80
scan  lines.  With  the  borders  killed,  my  guess  is that  we’ll se  about  270  or  so
scan  lines,  a  bit  depending  on  monitor,  perhaps  a  bit  less.  

After  the  picture  is  loaded  into  the  screen,  I back  up  all  the
registers  used,  it’s  essential  to  return  to  the  state  before  the  program  was  run.
As you  see,  the  backup  is  a  little  storage  area  of  14  bytes  that  is loaded  into
a0,  and  then  data  is  moved  in. It only  backs  up  13  bytes  of  data,  but  it  starts
off  by backing  up  5 bytes  of  data,  putting  it  on  an  uneven  address,  that  means
that  the  two  addresses  which  are  then  backed  up,  will be  on  uneven  addresses,
which  is  bad.  So after  the  five  bytes,  I add  one  to  a0  in  order  to  put  it  on  an
even  address,  so  the  storage  area  needs  to  be  14  bytes  in  order  to  handle  the
extra  empty  byte.   



Then,  disable  Timer  C, and  Timer  B. I only  disable  Timer  C and  do
nothing  more  with  it,  with  Timer  C on,  there  would  be  disturbances  due  to  the
critical  timing  of  the  border  killing.  Put  the  correct  address  in  the  Timer  B
vector,  and  then  enable  Timer  B by setting  the  correct  bits  in  Enable  A and
Mask  A. Next,  kickstart  the  main  routine  (here  called  vbl) and  just  wait  for  a
key  press.  After  the  key  press,  everything  is  restored  and  a clean  exit
performed.  

The  VBL routine  starts  off  by backing  up  the  status  register  and
disabling  all  interrupts,  then  it  continues  by waiting.  By my  calculation,  we are
waiting  for  exactly  15074  clock  cycles.  Nop,  NoOPeration,  is  a  command  that
does  exactly  nothing  but  take  4 clock  cycles.  Backing  up  the  status  register  is a
move  instruction,  that  takes  12  clock  cycles,  and  an  or  instruction  on  memory
takes  8 clock  cycles  if it’s  word  sized.  A movem  from  registers  to  a  pre-
decremented  memory  position  takes  8  clock  cycles,  plus  10  per  register
moved  since  we use  long- word  size,  and  each  dbf  takes  10  clock  cycles.  This
should  add  up  to  12  +  8 +  8 +  10  * 15  +  (10  +  4) * 1064  =  15074  clock  cycles.
Since  I just  took  this  method  from  James  Ingram’s  tutorials,  I haven’t  really
experimented  with  it  and  don’t  know  exactly  how  far  you  can  stretch  it  (that
is, what  happens  if you  delay  by say  15070  clock  cycles  instead).  

Now comes  the  part  that  actually  does  anything,  first  I toggle  the
second  bit  at  $ff820a,  by an  exclusive  or  operation,  then  wait  a  bit  and  toggle
back.  The  rept,  endr  commands  is  a  way  to  tell  the  assembler  that  the  lines
between  these  two  commands  should  be  repeated  for  so  many  times.  This  has
no  effect  on  the  program  when  actually  running,  it’s  as  though  I’d written  nop
eight  times  in  a  row,  but  this  is  easier  to  read.  Thus,  I wait  for  8  * 4 =  32  clock
cycles  between  the  synchronization  changes.  

After  the  top  border  has  been  killed,  it’s  time  to  prepare  to  kill  the
bottom  border.  First  it  should  be  disabled,  so  it’s  not  jumped  to  while  I set  it
up,  then  the  number  of  counts,  in  this  case  228.  If I’d only  been  interested  in
killing  the  bottom  border,  and  not  the  top,  this  value  would’ve  been  199.
Lastly,  Timer  B is  started  by putting  the  value  8 in  $fffffa1b,  meaning  that
Timer  B goes  into  event  count  mode.  Now, the  value  in  $fffffa21  will
decrement  by one  for  each  scan  line.  The  vbl  routine  is  then  finished  by
restoring  the  registers  and  status  register.

On  to  Timer  B, first  off,  backup  the  registers  that  are  used  in  the
routine,  to  avoid  bombs  and  other  unpleasantries.  I arrive  in  Timer  B
somewhere  on  228:th  scan  line,  and  I want  to  be  on  the  229:th  line  when  I kill
the  border.  Timer  B data  changes  exactly  on  the  start  of  every  scan  line,  so  by
checking  for  a  change  in  that  register,  I’ll know  exactly  when  the  change  comes
and  I’m exactly  at  the  beginning  on  the  229:th  scan  line  and  kill  off  the  border;
khazam!  (note:  if the  top  border  is  not  killed,  the  numbers  are  199:th  and
200:th  respectively)

The  check  for  change  in  the  register  might  be  a bit  tricky  at  first
glance;  I put  the  value  of  the  register  in  d0,  then  I compare  d0  with  the  value
of  the  register,  if those  are  equal,  I branch  back  a step  and  do  the  process
over.  This  is  repeated  until  the  value  in  Timer  B changes,  and  d0  and  Timer  B
will no  longer  hold  the  same  value.  Neat.  Arriving  on  the  229:th  scan  line  now,
I just  do  as  before;  toggle  PAL/NTFS, and  finish  off  that  border  as  well.  I
restore  the  backed  up  registers,  tell  the  ST the  interrupt  is  over  and  make  a
clean  exit.  All done;  no  top  or  bottom  border.  



It feels  like  this  tutorial  has  been  a lot  of  fact  blurping,  and
painfully  little  understanding.  Well, I guess  you  have  to  endure  some  things.
Now that  the  borders  are  gone,  we have  gained  some  more  pixels  to  work  with
obviously.  From  my  gazing- hard - at- the- monitor - trying- to- see  technique,  I
assume  that  the  top  border  is  29  scan  lines,  and  that  the  total  visual  spectra
goes  up  to  320*270  pixels,  meaning  the  bottom  border  is  41  scan  lines.  

There  are  lots  of  good  ways  to  make  use  of  Timer  B, for  instance,
one  can  change  the  palette  on  every  scan  line,  this  means  that  you  aren’t
limited  to  16  colours  a  screen,  but  can  with  ease  have  16  colours  per  scan  line.
In a  game,  it  would  be  nice  to  have  a  status  bar  in  the  lower  border,  or  upper
for  that  matter,  to  leave  the  320*200  “main  area”  uncluttered  with  such  stuff.
It would  also  be  able  to  have  that  status  bar  in  a  different  palette,  making  it
very  smooth.  Another  thing  is  the  possibility  to  change  resolution  mid- screen,
by doing  this,  you  can  have  a  medium  resolution  star  filed  in  the  upper  part  of
the  screen  (star  fields  require  few colours),  and  then  change  resolution  to  low
and  have,  say  a  nice  mountain  formation  on  the  bottom,  which  require  more
colours.  Creativity  is up  to  you!

Again,  thanks  to  all  people  who  support  and  encourage  me.  I got  a
mail  from  Bruno  Padinha,  who  sent  me  the  entire  tutorial  formatted  very
nicely.  I’ve received  mail  from  more  people  than  I could  have  dreamed  of,
thank  you  all! Also,  big thanks  go  out  to  all  good  people  at  #atariscne  on  IRC,
who  help  me  with  various  coding  stuff.  

perihelion  of  poSTmortem,  2002- 06- 01

“In strategy  it  is  important  to  see  distant  things  as  if they  were
close  and  to  take  a  distanced  view of  close  things.  It is  important  in  strategy  to
know  the  enemy’s  sword  and  not  to  be  distracted  by insignificant  movements
of  his  sword.  You  must  study  this.  The  gaze  is  the  same  for  single  combat  and
for  large- scale  strategy.”  

-  Book  of  Five Rings,  by Miyamoto  Musashi
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