
The Atari ST M68000 tutorial part 9 – of revealing the unseen and
expanding our consciousness without the use of illegal drugs

It’s been a while since the last tutorial, almost a month actually, sorry for that.
I’ve had a rough class in school, but that’s no excuse since I found lots of time
to play computer games. I just haven’t felt up to it. Now, summer holidays are
on and I plan on coding some for myself, besides the tutorials, but since I
need the knowledge myself, you can look forward to a tutorial on sprites and
how to handle the joystick (with that, one could make a nice shoot - em- up
game, yay). This tutorial however, will, as promised some while back, cover
timings. To have some practical example to work with, I’ll show you how to do
the neat trick of killing the upper and lower border.

But now for something completely different; Boolean algebra.
Boolean algebra states that the world is neatly and nicely built up of true or
false, black or white, good or evil, 1 or 0. The last bit there applies to us as
computer programmers. Boolean algebra is all about bit manipulation. There
are a few so called logical operands, that you can use to compare two bits to
each other, and get the result true or false (1 or 0) from the equation. The
ones I will cover here are and, or and exclusive or. In each case, there are two
bits involved, resulting in four different combinations of those bits, this is to
hard to put in words, see below for how it works.

AND
Bit 1 Bit 2 Result
1 1 1
0 0 0
1 0 0
0 1 0

OR
Bit 1 Bit 2 Result
1 1 1
0 0 0
1 0 1
0 1 1

EOR (XOR in some other languages)
Bit 1 Bit 2 Result
1 1 0
0 0 0
1 0 1
0 1 1

For an and operation to be true, both operands need to be true (in
programming lingo, that means that the result of an and operation is 1 if both
bits are 1). For an or operation to be true, either one or both of the operands
must be true. For an exclusive or operation to be true, either one, but not
both, of the operands must be true.

These kinds of operations become extremely important when
doing stuff to the screen memory later on. For example, imagine you have a

screen filled with colour (all 1’s in the screen memory), and you want to clear
out just that one bit in a certain place. You then prepare a so called mask, and
and it in. A mask really is a quantity, that is to be applied in a logical
operation on another quantity, in order to produce the result you want, that is
one hard and stupid way of explaining it. Example again, in this example, we
want to clear the most significant bit and keep the others intact.

Mask
%01111111

Memory
%11111111

and mask,memory (pseudo code)
%01111111

and %11111111

result %01111111

When performing and here, you just compare bits one after
another, in the most significant bit, the and operation becomes false, thus the
result is 0, and in all other cases, it’s true. So by having this mask, and and:ing
it with the screen memory, we have a good way of clearing away bits, we could
create a raster by using a %10101010 mask.

Each operation, that is and, or and exclusive or, is good for
different things. As we have seen, and is good for clearing bits. Exclusive or is
good for many things, but the most obvious one is flipping bits, if you
exclusive or a bit with 1, that bit will always “flip” (go from 1 to 0, or 0 to 1).
Or is good when you want to set some bits, no matter what value they had
before, it’s called setting a bit when you make it 1, or true. So and clears, or
sets and exclusive or flips, that really covers most things that need to be done.
Of course, you can most likely come up with devious plots to do different
things than the ones we’ve gone through here.

Now, onto timings! When an exception occurs, normal program
execution halts and the ST looks at a certain vector (memory position)
depending on the kind of exception, and then executes what it finds there.
What this means is that when an exception occurs (exceptions are “special
events”) the ST looks for an address pointer at a given address, and jumps
there. For example, when an address error occurs, there is an address error
exception. The address at $00c, is the address error exception address, so
every time there is an address error, the ST will jump to the address found at
$00c. This address, we can change ourselves.

into supervisor mode
move.l $00c,- (a7) backup address error vector
move.l #address_error,$00c put our own routine there
make address error occur for example, an

uneven address call
move.l (a7)+,$00c restore address error vector

into user mode
exit

address_error
* our own address error routine, replacing the normal address error routine

output error text, or do something else, freedom of choice
rte return from exception

In normal cases, when there is an address error, there will be three
bombs on the screen, but with the little program above, we can change what
happens when an address error occurs. We could make the address error
routine do anything, like changing background colour; quite fun, every time
there is an address error, instead of three bombs, the background colour
changes. The program above won’t really work, some things are missing, you
will replace the bombs with some effect of yours, but the ST will probably
hang in all sorts of ways, it’s just provided as a demonstration. As a side note,
whenever an exception occurs, the status of the ST is saved at $384 and a bit
forward, you can read exactly about that in ST Internals pp. 235- 237. The ST
Internals is a great book by Abacus Software, that describes much of the
hardware of the ST.

The ST has several timing pulses, that generate exceptions, this
means that we can control these timing pulses and make them work for us. I’ll
explain the most simple one, the $70 vector. Every VBL, an exception occurs
and the ST jumps to the address stored at $70. So instead of using the old way
we’ve been using with doing a VBL check at the start of our main routine, we
can put our main routine in the $70 vector, because it will start every VBL! All
exceptions must end with a rte command, ReTurnException, compare this to
the rts command. Here’s a little pseudo code on the usage of the $70 vector.

into super mode
move.l $70,old_70 backup $70
move.l #main,$70
wait key press
move.l old_70,$70 restore $70
out of super mode
end program

main
do stuff
rte

section data
dc.l old_70

The thing here which might seem a bit strange is the wait key press
and then just a clean exit. Well, the thing is that once we hook up the $70
vector, the main routine will be executed every VBL, so while the ST waits for a
key to be pressed, the main routine will execute. In a bigger program, you can
start off by hooking up, say a music routine on the $70 vector, then load in
lots of stuff from disk, meanwhile, the music will play, then after loading is

finished, you change the $70 vector to the real program so to speak. Endless
possibilities :)

Oh, btw, the routine may not take more than 1/50 th of a second to
perform, because if it does, the ST will call the routine again, while you are
still executing it and that won’t work. Use the background colouring method
from the last tutorial to see how much time your routine takes. Also, you
must backup all your registers and restore them at start and finish of the $70
routine, otherwise your computer might crash for some strange reasons.
Here’s how to do that really simple, by pushing and popping them on and off
the stack.

vbl
movem.l d0- d7/a0 - a6,- (a7) backup registers
… do stuff
movem.l (a7)+,d0- d7/a0 - a6 restore registers
rte exit vbl routine

Btw, using the $70 vector for your main instruction is slightly
faster than the technique we used before. There is a little chip in the ST that is
called MFP, for Multi Functional Peripheral, it can do lots of cool stuff, but
right now we’re interested in its timers, there are four timers that control
timing pulses, and we will be interested in looking at one of them; Timer B.
This is the complete list of the MFP registers, all are 8 bits.

Address Register
$fffa01 Parallel port
$fffa03 Active Edge register
$fffa05 Data direction
$fffa07 Interrupt enable A
$fffa09 Interrupt enable B
$fffa0b Interrupt pending A
$fffa0d Interrupt pending B
$fffa0f Interrupt in- service A
$fffa11 Interrupt in- service B
$fffa13 Interrupt mask A
$fffa15 Interrupt mask B
$fffa17 Vector register
$fffa19 Timer A control
$fffa1b Timer B control
$fffa1d Timer C & D control
$fffa1f Timer A data
$fffa21 Timer B data
$fffa23 Timer C data
$fffa25 Timer D data
$fffa27 Sync character
$fffa29 USART character
$fffa2b Receiver status
$fffa2d Transmitter status
$fffa2f USART data

These are the vectors
$134 Timer A vector
$120 Timer B vector

To make things difficult fore some strange reason, Atari decided
that the names given to the MFP registers would be misnomers, at least I think
they are. As I said, there are four timers. The timers share some registers,
here’s how that’s broken down.

Timer A

All of
$fffa19 Timer A control
$fffa1f Timer A data

Bit 5 of
$fffa07 Interrupt enable A
$fffa0f Interrupt in- service A
$fffa13 Interrupt mask A

Timer B

All of
$fffa1b Timer B control
$fffa21 Timer B data

Bit 0 of
$fffa07 Interrupt enable A
$fffa0f Interrupt in- service A
$fffa13 Interrupt mask A

Timer C

Bit 5 of
$fffa09 Interrupt enable B
$fffa11 Interrupt in- service B
$fffa15 Interrupt mask B

So you see, timer A and B share some registers, and only use one
bit in those shared registers. OK, that’s a long list, but we don’t have to worry
about to many of those address. We’ll only be using enable A, mask A, mask B,
Timer B control, Timer B data and two vectors; $70 and $120, if that’s of any
comfort. Right now, you are probably wondering your ass off, that’s ok, I did
too the first time I read about this (in the tutorials by James Ingram).

If you wonder about the MFP, and exactly where it is physically in
the ST, it’s not necessary to know. You access the timer addresses just as you
would any other address. The ST has many small chips that do stuff, like
controlling the joystick, the sound and so on. The only thing you need to
know to handle them is where they are in memory, every device is “mapped”

to memory, so just think about the ST as one big list of memory positions, by
changing the memory, you change the way the chips inside the ST work.

It really is due time to do something practical with all of this.
Timers A and B can be in one of many modes, controlled by Control A and
Control B respectively. For Timer B, the most interesting one is #8, event count
mode. When Timer B is in event count mode, it will interrupt for every Nth
scan line , where N is the number put in Timer B data (thus 2 means every
second scan line, 1 means every scan line). So if we put Timer B in event count
mode, put number 1 in Timer B data, then the instructions found at $120 will
be executed on every scan line, very much like $70 will be executed every VBL.
For this reason, Timer B is also called HBL, Horizontal BLank.

Now this is interesting and useful, finally. In order to turn timer B
on, we must set bit 5 in both Enable A and Mask A. To manipulate certain bits
we use the commands bset, for Bit SET and bclr for Bit CLeaR. Here’s how we
actually do to make the ST jump to a certain address every scan line.

clr.b $fffffa1b disable timer b
move.l #timer_b,$120 move in my timer b address
bset #0,$fffffa07 turn on timer b in

enable a
bset #0,$fffffa13 turn on timer b in

mask a
move.b #1,$fffffa21 number of counts,

every scan line
move.b #8,$fffffa1b set timer b to event

count mode

Now the address at #timer_b will be jumped to every scan line.
What really fires away Timer B is the activation of the Timer B Control
($fffffa1b) when we put it in event count mode. Whenever we exit a Timer B
exception, we must tell the ST a bit more specifically than when we exit form a
$70 exception. We have to clear the 0 bit in in- service A, like this.

bclr #0,$fffffa0f tell ST interrupt is
done

rte return from exception

You must also back up all registers you plan to use in the
interrupt, or you’ll once again get a crash. So finally, we know how to use
Timer B at least, and we have the power to know exactly at what scan line
we’re at (do we really understand this?). It might be very frustrating with all
those addresses and how they work and so, actually, it’s not so much to
understand, rather just accept. When we put certain values into these
registers, stuff will happen, memorize the addresses to make life easier, and
just go about your work.

So how do we kill borders? This also is somewhat “just do it and
realize it works”. In order to kill the top and bottom border, you change from
PAL to NTFS exactly on the correct scan line, then wait some for the effect to
kick in and then back again. For killing the top border, it’s the first scan line,
for killing the bottom border, it’s the last scan line.

For killing the top border, you just wait some, about 15000 clock
cycles, which will put the electron beam on the first scan line and then toggle
PAL/NTFS, for killing the bottom border we check when we’re on the last scan
line, and toggle PAL/NTFS.

Did someone say toggle and check for scan line? Yes someone did
(that was me), and haven’t we just learned how to do just these things; an
exclusive or and Timer B will do the trick! Now we just need one more thing;
how to change between PAL and NTFS, it’s probably in memory somewhere, so
whip out the Memory.txt and do a search.

The synchronization mode is controlled by bit 1 at address
$ff820a. If this bit is 1, the system is in PAL (50Hz) mode, and if it’s 0 the
system is in NTFS (60Hz) mode. Even though this will work and kill the
borders, there will be lots of flickering due to Timer C and other interrupts
interfering. The reason for the flicker, is that the interrupts will interfere with
our time critical calculations. To disable Timer C, just clear bit 5 of Mask B, to
disable all interrupts, we have to mess around some with the status register.

The status register is made up of 16 bits, the first 8 bits being the
user bits and the next 8 the system bits. The user bits are so called flags, and
record the result of the latest operation. The system bits control interrupts, a
trace bit and the supervisor bit.

Bit Name
0 Carry flag
1 Overflow flag
2 Zero flag
3 Negative flag
4 eXtended flag
8 Interrupt
9 Interrupt
10 Interrupt
13 Supervisor bit
15 Trace bit

The carry flag is set when the result of an arithmetic operation is
too big to fit, this is the same as the little memory tag used by humans when
adding or multiplying with pen and paper. Say we want to add a number and
put it in d0.b, and the result is %100000000 = 256, 9 bits won’t fit in d0.b, so
d0.b will contain all zeros and the carry flag will be set. Also set when a
borrow occurs in a subtraction. The overflow flag is set when the result of an
arithmetic operation is too high to fit in the destination, like the add example
above. The zero flag is set when the result of an operation is zero (the strange,
mystic workings of computers, which seldom make sense to the human mind
…) . The negative flag is set when the result is negative. The extended flag is
as the carry flag in arithmetic operations, otherwise it can serve special
functions given for each instruction.

Note in all the flags the difference between arithmetic operations
and other operations. The trace flag is set when the computer is in trace
mode, as it is when debugging, performing only one instruction at a time.

Depending on how the interrupt bits are set, the ST will accept
different interrupt levels. In our case, the only interesting interrupt level is

when all bits are set, because then all interrupts are disabled. So, we want to
set bit 8, 9 and 10, but not touch any of the other bits. An or operation has the
power to set some bits, and leave all other alone. By or:ing the status register
with %0000011100000000, we make sure that bits 8 – 10 are set, and that all
other bits are left as they were. In order not to have to write that cumbersome
number each time, we instead use $0700, which is the same number. Of
course, the status register must also be backed up. I’m tired of all theory, so
I’ll just drop all source code in your face right now and go through it.

jsr initialise

movem.l picture+2,d0 - d7 put picture palette in d0- d7
movem.l d0- d7,$ff8240 move palette from d0- d7

move.l #screen,d0 put screen1 address in d0
clr.b d0 put on 256 byte boundary

move.l d0,a0 a0 points to screen memory

clr.b $ff820d clear STe extra bit
lsr.l #8,d0
move.b d0,$ff8203 put in mid screen

address byte
lsr.w #8,d0
move.b d0,$ff8201 put in high screen

address byte

move.l #picture +34,a1 a1 points to picture

move.l #11199,d0 320*280 / 8 - 1
loop

move.l (a1)+,(a0)+ move one longword
to screen

dbf d0,loop

move.l #backup,a0 get ready with backup
space

move.b $fffa07,(a0)+ backup enable a
move.b $fffa13,(a0)+ backup mask a
move.b $fffa15,(a0)+ backup mask b
move.b $fffa1b,(a0)+ backup timer b

control
move.b $fffa21,(a0)+ backup timer b data
add.l #1,a0 make address even
move.l $120,(a0)+ backup vector $120 (timer b)
move.l $70,(a0)+ backup vector $70 (vbl)

bclr #5,$fffa15 disable timer c
clr.b $fffa1b disable timer b
move.l #timer_b,$120 move in my timer b address

bset #0,$fffa07 turn on timer b in enable a
bset #0,$fffa13 turn on timer b in mask a

move.l #vbl,$70

move.w #7,- (a7) wait keypress
trap #1
addq.w #2,a7

move.l #backup,a0
move.b (a0)+,$fffa07 restore enable a
move.b (a0)+,$fffa13 restore mask a
move.b (a0)+,$fffa15 restore mask b
move.b (a0)+,$fffa1b restore timer b

control
move.b (a0)+,$fffa21 restore timer b data
add.l #1,a0 make address even
move.l (a0)+,$120 restore vector $120 (timer b)
move.l (a0)+,$70 restore vector $70 (vbl)

jsr restore

clr.l - (a7)
trap #1

vbl
move.w sr,- (a7) backup status register
or.w #$0700,sr disable interrupts
movem.l d0- d7/a0 - a6,- (a7) backup registers

move.w #1064,d0
pause

nop
dbf d0,pause about 15000 cycles pause

eor.b #2,$ff820a toggle PAL/NTSF
rept 8
nop wait a bit ...
endr ... for effect to kick in
eor.b #2,$ff820a toggle PAL/NTFS back again

clr.b $fffa1b disable timer b
move.b #228,$fffa21 number of counts
move.b #8,$fffa1b set timer b to event count mode

movem.l (a7)+,d0- d7/a0 - a6 restore registers
move.w (a7)+,sr restore status register
rte finnished interrupt

timer_b
movem.l d0/a0, - (a7) backup registers
move.l #$fffa21,a0 timer b counter

address
move.b (a0),d0 get timer b count value
pause_b
cmp.b (a0),d0 wait for it to change
beq pause_b EXACTLY on next line now!

eor.b #2,$ff820a toggle PAL/NTSF
rept 8
nop wait a bit ...
endr ... for effect to kick in
eor.b #2,$ff820a toggle PAL/NTFS back again

movem.l (a7)+,d0 /a0 restore registers
bclr #0,$fffa0f tell ST interrupt is done
rte exit interrupt

include initlib.s

section data

picture incbin kenshin.pi1

section bss

ds.b 256
screen ds.l 11200

backup ds.b 14

Phew, that was some. Nice and gentle walkthrough. First, just as
usual, just initialise screen and so on. The picture is 320*280 pixels, instead of
the normal 320*200. For compatibility reasons, I did it in Degas format, so
you’ll have no problem looking at it in Degas, but you’ll not see the last 80
scan lines. With the borders killed, my guess is that we’ll se about 270 or so
scan lines, a bit depending on monitor, perhaps a bit less.

After the picture is loaded into the screen, I back up all the
registers used, it’s essential to return to the state before the program was run.
As you see, the backup is a little storage area of 14 bytes that is loaded into
a0, and then data is moved in. It only backs up 13 bytes of data, but it starts
off by backing up 5 bytes of data, putting it on an uneven address, that means
that the two addresses which are then backed up, will be on uneven addresses,
which is bad. So after the five bytes, I add one to a0 in order to put it on an
even address, so the storage area needs to be 14 bytes in order to handle the
extra empty byte.

Then, disable Timer C, and Timer B. I only disable Timer C and do
nothing more with it, with Timer C on, there would be disturbances due to the
critical timing of the border killing. Put the correct address in the Timer B
vector, and then enable Timer B by setting the correct bits in Enable A and
Mask A. Next, kickstart the main routine (here called vbl) and just wait for a
key press. After the key press, everything is restored and a clean exit
performed.

The VBL routine starts off by backing up the status register and
disabling all interrupts, then it continues by waiting. By my calculation, we are
waiting for exactly 15074 clock cycles. Nop, NoOPeration, is a command that
does exactly nothing but take 4 clock cycles. Backing up the status register is a
move instruction, that takes 12 clock cycles, and an or instruction on memory
takes 8 clock cycles if it’s word sized. A movem from registers to a pre-
decremented memory position takes 8 clock cycles, plus 10 per register
moved since we use long- word size, and each dbf takes 10 clock cycles. This
should add up to 12 + 8 + 8 + 10 * 15 + (10 + 4) * 1064 = 15074 clock cycles.
Since I just took this method from James Ingram’s tutorials, I haven’t really
experimented with it and don’t know exactly how far you can stretch it (that
is, what happens if you delay by say 15070 clock cycles instead).

Now comes the part that actually does anything, first I toggle the
second bit at $ff820a, by an exclusive or operation, then wait a bit and toggle
back. The rept, endr commands is a way to tell the assembler that the lines
between these two commands should be repeated for so many times. This has
no effect on the program when actually running, it’s as though I’d written nop
eight times in a row, but this is easier to read. Thus, I wait for 8 * 4 = 32 clock
cycles between the synchronization changes.

After the top border has been killed, it’s time to prepare to kill the
bottom border. First it should be disabled, so it’s not jumped to while I set it
up, then the number of counts, in this case 228. If I’d only been interested in
killing the bottom border, and not the top, this value would’ve been 199.
Lastly, Timer B is started by putting the value 8 in $fffffa1b, meaning that
Timer B goes into event count mode. Now, the value in $fffffa21 will
decrement by one for each scan line. The vbl routine is then finished by
restoring the registers and status register.

On to Timer B, first off, backup the registers that are used in the
routine, to avoid bombs and other unpleasantries. I arrive in Timer B
somewhere on 228:th scan line, and I want to be on the 229:th line when I kill
the border. Timer B data changes exactly on the start of every scan line, so by
checking for a change in that register, I’ll know exactly when the change comes
and I’m exactly at the beginning on the 229:th scan line and kill off the border;
khazam! (note: if the top border is not killed, the numbers are 199:th and
200:th respectively)

The check for change in the register might be a bit tricky at first
glance; I put the value of the register in d0, then I compare d0 with the value
of the register, if those are equal, I branch back a step and do the process
over. This is repeated until the value in Timer B changes, and d0 and Timer B
will no longer hold the same value. Neat. Arriving on the 229:th scan line now,
I just do as before; toggle PAL/NTFS, and finish off that border as well. I
restore the backed up registers, tell the ST the interrupt is over and make a
clean exit. All done; no top or bottom border.

It feels like this tutorial has been a lot of fact blurping, and
painfully little understanding. Well, I guess you have to endure some things.
Now that the borders are gone, we have gained some more pixels to work with
obviously. From my gazing- hard - at- the- monitor - trying- to- see technique, I
assume that the top border is 29 scan lines, and that the total visual spectra
goes up to 320*270 pixels, meaning the bottom border is 41 scan lines.

There are lots of good ways to make use of Timer B, for instance,
one can change the palette on every scan line, this means that you aren’t
limited to 16 colours a screen, but can with ease have 16 colours per scan line.
In a game, it would be nice to have a status bar in the lower border, or upper
for that matter, to leave the 320*200 “main area” uncluttered with such stuff.
It would also be able to have that status bar in a different palette, making it
very smooth. Another thing is the possibility to change resolution mid- screen,
by doing this, you can have a medium resolution star filed in the upper part of
the screen (star fields require few colours), and then change resolution to low
and have, say a nice mountain formation on the bottom, which require more
colours. Creativity is up to you!

Again, thanks to all people who support and encourage me. I got a
mail from Bruno Padinha, who sent me the entire tutorial formatted very
nicely. I’ve received mail from more people than I could have dreamed of,
thank you all! Also, big thanks go out to all good people at #atariscne on IRC,
who help me with various coding stuff.

perihelion of poSTmortem, 2002- 06- 01

“In strategy it is important to see distant things as if they were
close and to take a distanced view of close things. It is important in strategy to
know the enemy’s sword and not to be distracted by insignificant movements
of his sword. You must study this. The gaze is the same for single combat and
for large- scale strategy.”

- Book of Five Rings, by Miyamoto Musashi

Last edited 2002- 07- 06

