
The  Atari  ST M68000  tutorial  part  8  – of  scrolling  8 pixels  per  VBL using
double  buffer

In the  last  few days,  I’ve had  the  great  opportunity  to  get  lots  of  introduction
to  the  Atari  scene.  mOdmate  of  Checkpoint  told  me  about  #atariscne,  and
since  then  he’s  guided  me  through  the  stuff,  giving  me  links  to  good  sites  and
generally  telling  me  what  I need  to  know  to  orient  myself.  I’ve met  some  great
people  that  have  helped  me  understand  things  and  being  a  better  coder.  Also,
let’s  not  forget  the  importance  of  Maarten  Martens  for  converting  this  text  file
to  html  and  banging  me  on  the  head  whenever  I take  a wrong  step.  I could  not
write  this  stuff  alone,  lots  of  thanks  to  all  of  you  who  make  this  text  possible.
I also  want  to  thank  God,  for  giving  me  the  luck  and  opportunity  to  be  where  I
am,  my  mother  for  giving  birth  to  me  and  always  being  there  and  all  … (end  of
Hollywood  speech)

In order  to  get  an  even  better  understanding  of  the  bit  planes,  I’ve
done  an  8 pixel  scroller.  The  thing  with  this  is  that  you  must  be  careful  not  to
misalign  the  bit  planes,  which  we didn’t  have  to  worry  about  when  scrolling  16
pixels  per  VBL. Since  not  to  much  have  changed  since  the  16  pixel  scroller,  I
thought  I’d cover  some  other  stuff  as  well.   

First,  I need  to  cover  the  shift  command  in  order  to  be  able  to  tell
you  about  double  buffering  (there  are  more  than  one  shift  command,  but
they’ll be  covered  later).  The  shift  command  will shift  bits  either  left  or  right,
as  many  “slots”  as  you  want  to.  The  command  for  shifting  left  is  lsl,  meaning
Logical  Shift  Left,  and  right  is  lsr  for  Logical  Shift  Right.  If you  have  a  number
in  d0  and  right  shift,  like  so

move.l #%10110001,d0 d0  =  177
lsr.l #2,d0

Then  d0  will contain

%00101100 44

All bits  will jump  two  spaces  to  the  right,  and  0’s have  moved  in
from  the  left.  Also  note  that  this  was  the  same  as  dividing  177  by 4 and
throwing  away  the  remainder.  Left  shifting  will move  bits  to  the  left,  and  move
0’s in  from  the  right.  Right  shifting  one  is the  same  as  dividing  by 2. Thus  a
lsr.l  #2  is  the  same  as  divu.l  #4,  and  a lsl.l  #2  is  the  same  as  a mulu.l  #4.  Only
thing  is  that  a shift  is soooo  much  faster  than  a  mulu  or  divu,  but  more  on
that  later.  It’s very  important  to  note  how  big the  shift  area  is,  if you  have  a
data  register  filled  with  bits,  but  only  shift  a  byte,  lsr.b,  only  the  first  8  pixels
will be  affected.  Like so

move.w #%1010101010101010,d0
lsr.b #4,d0

Upper  byte Lower  byte
d0  =  %1010101 %000001010



Note  how  the  upper  byte  of  the  word  was  completely  unchanged  by
the  shift  operation,  since  we used  a  lsr.b  operation.  

Now we can  go  on  with  double  buffering.  This  is an  extremely
important  technique.  The  screen  is  painted  by an  electron  beam  that  goes
from  upper  left,  and  then  sweeps  one  horizontal  line,  down  to  the  bottom
right,  just  as  the  screen  coordinates.  Now, what  happens  if you  start  to  make
changes  to  the  screen  where  the  electron  beam  is  painting?  You  will
experience  flicker  or  a  distorted  line  or  any  other  horrible  thing.  In short,
when  you  write  to  screen  memory,  you’ll  most  likely  interrupt  the  electron
beam  in  its  work.  

It is  possible  to  change  the  area  of  memory  that  is the  screen
memory,  any  area  of  memory  can  be  the  screen  memory  actually.  So for  every
VBL (or  even  often),  we can  change  what  area  of  memory  is  the  screen
memory.  A solution  begins  to  crystallize.  We have  to  screen  area  sized  areas
of  memory,  one  which  is  the  actual  screen  memory  (being  shown  on  the
monitor)  and  the  other  works  as  a  buffer.  

What  we do  is  to  update  the  buffer,  while  leaving  the  other  screen
alone,  in  this  way,  nothing  will happen  to  the  screen  memory  while  the
electron  beam  is  painting.  Then,  just  in  the  beginning  of  the  next  VBL, we
make  the  buffer  the  screen  memory  and  the  screen  memory  the  buffer.  In this
way,  we will never  paint  to  the  actual  screen  memory.  One  can  also  all  the
memory  that  is  being  displayed  for  the  physical  base,  and  the  area  of  memory
not  being  displayed  for  the  logical  base.  So far,  we’ve gotten  the  address  to  the
physical  base  by calling  trap  #2  of  the  XBIOS, if you  call  trap  #3,  you’ll  get  the
logical  base.  Usually,  both  of  these  point  to  the  same  memory  area.  

Instead  of  getting  the  physical  address  from  the  Atari,  we will now
define  our  own  area  of  memory  and  input  that  address  directly  into  memory.
There’s  only  one  important  thing  to  know  about  the  screen  memory;  it  must
be  on  a  256  byte  boundary  (unless  you  have  a  Ste). What  this  means  is  that  the
start  address  of  the  screen  memory  must  be  a  multiple  of  256.  This  can  be
achieved  by clearing  the  lower  byte  of  the  address,  meaning  that  you’ll  need
256  bytes  extra  memory  for  your  screen  memory,  so  you  can  clear  the  lower
byte.  Why? Because  clearing  away  the  byte  will clear  away  anything  not
multipliable  by 256,  the  size  of  a byte.  

So, how  do  we make  a memory  area  the  screen  memory?  Smack  up
the  memory.txt  file,  and  search  for  something  appropriate,  like  “screen”.  We
see  this.

$FF8201 |byte  |Video  screen  memory  position  (high  Byte)   |R/W
$FF8203 |byte  |Video  screen  memory  position  (mid  Byte) |R/W
$FF820D |byte  |Video  screen  memory  position  (low Byte)     |R/W
(STe)

Sure,  ok,  seems  to  be  what  we need.  The  low  byte  in  $ff820d  is  for
STe’s only,  and  should  be  cleared  at  all  times  to  avoid  trouble.  Then  the
middle  byte  of  the  screen  address  goes  into  $ff8203  and  the  high  byte  goes
into  $ff8201.  In order  to  get  the  middle  and  high  byte  of  the  screen  address,
we shift  the  address.  By shifting  down  the  eight  bits  constituting  the  byte,  we
can  easily  move  out  bytes  from  the  screen  address  by move.b  commands.  



High  byte Middle  byte Low byte
screen %00010111 %01001101 %10111110

$174dbe

First  we clear  the  low byte  in  order  to  put  it  on  a 256  boundary.  

move.l #screen,d0
clr.b d0

High  byte Middle  byte Low byte
screen %00010111 %01001101 %00000000

Now we need  to  move  the  middle  byte  into  $ff8203

lsr.l #8,d0

High  byte Middle  byte Low byte
screen %00000000 %00010111 %01001101

move.b d0,$ff8203

As you  see,  the  middle  byte  gets  shifted  into  the  lower  byte.  With  a
move.b  command  the  only  thing  we move  is  the  lowest  byte  of  d0.  Thus,  we
have  isolated  the  middle  byte  by shifting  it  into  a  more  convenient  position.
Now for  the  last  one.

lsr.w #8,d0

High  byte Middle  byte Low byte
screen %00000000 %00000000 %00010111

move.b d0,$ff8201

And  that’s  it.  We have  now  cleared  the  lowest  byte  of  the  screen
address,  and  moved  the  middle  and  high  bytes  of  it  into  the  correct  memory
position.  screen  is  now  the  screen  memory.  The  compact  code  snippet  looks
like  this.  

move.l #screen,d0 put  screen1  address  in
d0

clr.b d0 put  on  256  byte  boundary

clr.b $ffff820d clear  STe extra  bit
lsr.l #8,d0
move.b d0,$ffff8203 put  in  mid  screen

address  byte
lsr.w #8,d0
move.b d0,$ffff8201 put  in  high  screen

address  byte



section  bss
ds.b 256 256  byte  clear  buffer
screen ds.b 32000 the  screen

Now, this  doesn’t  make  for  any  double  buffer  at  all,  since  we’re
only  using  one  screen.  In order  to  achieve  double  buffering,  we need  two
screen  areas,  and  two  pointers  to  point  to  each  area.  In each  VBL, one  screen  is
made  into  screen  memory,  and  then  the  pointers  are  flipped   so  that  the  other
screen  is  made  screen  memory  for  next  VBL. This  really  makes  what  you  see
on  the  screen  appear  1/50th  of  a  second  slower  than  what  you  draw.  

prepare  addresses
make  next  and  last  point  to  screen1  and  screen2

main
wait  VBL

move.l next,d0
make  address  in  d0  screen  address

move.l last,a0
move.l next,a1 load  screens
move.l a1,last and  flip  them  for  next  time

around
move.l a0,next double  buffering  :)

* loads  the  screen  addresses  and  flips  them  around

do  your  stuff,  like  putting  graphics  to  the  address  in  a1

repeat  main  loop

section  data
last dc.l 0
next dc.l 0

section  bss
ds.b 256

screen1 ds.b 32000
screen2 ds.b 32000

I also  thought  we might  mention  timing  as  well.  This  is  quite  the
issue  really,  as  you  must  have  understood,  you  can’t  perform  an  infinite
number  of  instructions.  Included  here  should  be  two  text  files,  called
CYCTIMES.TXT and  PIXELTIM.TXT. The  CYCTIMES.TXT explains  how  much
time  it  takes  to  do  each  instruction.  This  can  vary  greatly,  for  example,  a
division  takes  way  over  100  clock  cycles,  and  a  shift  takes  under  10,  so  you
see,  it’s  a  good  thing  to  replace  your  divu’s  with  lsl’s  if possible.  Also,  when
you  can,  work  with  byte  or  word  size,  instead  of  long,  since  this  saves  some
time  also.  Clock  cycle  is  the  quantity  in  which  “time”  is  measured.  Each
instruction  takes  a  certain  amount  of  clock  cycles.  



The  PIXELTIM.TXT was  extracted  by me  from  the  ST Internals  text
file  by Jim  Boulton.  One  interesting  thing  to  note  there  is  the  amount  of  clock
cycles  per  VBL; 160256.  This  is  a  very  exact  number,  and  if your  main  loop
ever  takes  more  time  than  that,  you’re  screwed  (if you  work  with  VBL main
loops  as  we’ve done  so  far  that  is). One  way  to  get  a  graphical  pointer  of  how
much  time  your  main  routine  does  take,  is  to  change  the  background  colour
just  at  the  start  of  the  routine,  then  change  it  back  in  the  end.  

Let’s say  we have  a  routine  that  takes  80000  clock  cycles,  our
original  background  is  black,  but  in  the  beginning  of  our  main  loop,  we set  it
to  red.  What  will happen  is  that  the  electron  beam  will paint  red  background,
but  when  our  80000  clock  cycles  worth  of  instructions  have  taken  place,  the
background  is  switched  back  to  black,  which  means  that  for  the  time  it  takes
to  wait  for  the  next  VBL, the  electron  beam  will paint  black.  So, in  this  case,
the  screen  would  be  half  red  background  and  half  black  background.  If we use
this  technique,  we’ll see  exactly  how  much  time  our  main  routine  takes.  The
example  program  in  this  tutorial  takes  up  most  of  the  processor,  which  leaves
little  time  for  other  stuff  to  be  done.  Granted,  the  scroller  is  completely  un-
optimized.  

Phew,  now  we have  covered  lots  of  small  things  of  big importance.
Finally,  now  comes  the  8 pixel  scroller  part.  Just  look  at  the  source  code,  it’s
well  commented.  Nah,  I’m just  kidding  with  you,  of  course  I’ll explain.  Since
we now  want  to  scroll  8  pixels,  this  means  for  starters  that  we need  to  move
bytes.  The  first  byte  represents  the  first  8  pixels,  and  the  second  the  coming  8
pixels.  Then,  the  third  word  again  has  to  do  with  the  first  8  pixels,  and  the
fourth  word  has  to  do  with  the  8 coming  pixels  and  so  on.  Thus,  we cannot
simply  barge  in  and  do  some  scroll  loop.  We need  to  move  every  second  byte.  

Index First  byte Index Second  byte
0 %11000000 1 %00000000 first  word
2 %11000000 3 %00000101 second
word
4 %01000000 5 %00000110 third  word
6 %01100000 7 %00000000 fourth
word

0- 7 $3F800000 8- 15 $00000642 pixels  

Index First  byte index Second  byte
8 %00000110 9 %00100000 first  word
10 %00000010 11 %00100100 second
word
12 %00000000 13 %10000010 third  word
14 %00100010 15 %00010000 fourth
word

16- 23 $008001B0 24- 31 $40380240 pixels  

It is  tempting  to  read  the  memory  top  down,  but  this  is  not  so,  it  is
to  be  read  from  left  to  right.  So index  5 for  example  is  the  second  byte  in  the



third  word,  and  affects  pixels  8  – 15.  The  memory  without  comments  look  like
this,  split  into  bytes  for  ease  of  reading.

%11000000 %00000000 %11000000
%00000101 %01000000
%00000110 %01100000 %00000000
%00000110 %00100000
%00000010 %00100100 %00000000
%10000010 %00100010
%00010000 …

So in  order  to  scroll  8  pixels,  index  0,  2, 4 and  6 will de  dropped,
because  they  represent  the  first  8  pixels.  Then  index  1, 3,  5 and  7 will be
moved  into  index  0, 2, 4 and  6. Then  index  8, 10,  12  and  14  will be  moved  into
index  1, 3, 5 and  7. Then  index  9,  11,  13  and  15  will be  moved  into  index  8,  10,
12  and  14.  This  will make  pixels  0- 7 to  drop,  8- 15  to  be  moved  into  0- 7, 16-
23  will be  moved  into  8- 15  and  24- 31  will move  into  16- 23.  After  these  move
instructions,  the  memory  will look  like  this

Index First  byte Index Second  byte
0 %00000000 1 %00000110 first  word
2 %00000101 3 %00000010 second
word
4 %00000110 5 %00000000 third  word
6 %00000000 7 %00100010 fourth
word

0- 7 $00000642 8- 15 $008001B0 pixels  

Index First  byte Index Second  byte
8 %00100000 9 … first  word
10 %00100100 11 … second  word
12 %10000010 13 … third  word
14 %00010000 15 … fourth  word

16- 23 $40380240 24- 31 … pixels

It is  of  the  utmost  importance  that  you  realize  why  this  is  so.  If
you  do  not,  set  yourself  down  and  work  it  out  until  you  get  it  and  understand
it  100%. Without  understanding  this,  you’ll  not  understand  bit  planes,  without
understanding  bit  planes,  you  can’t  understand  how  the  graphics  on  the  Atari
works.  Expressed  in  code,  this  will be  (a0  points  to  screen  memory)

move.b 1(a0),(a0)
move.b 3(a0),2(a0)
move.b 5(a0),4(a0)
move.b 7(a0),6(a0) 8 pixels  moved
move.b 8(a0),1(a0) watch  carefully!
move.b 10(a0),3(a0)
move.b 12(a0),5(a0)



move.b 14(a0),7(a0) first  4 word  area
filled

move.b 9(a0),8(a0) start  of  second  4 word  area
move.b 11(a0),10(a0)
…

and  so  on.  So first,  four  bytes  are  moved  just  one  step  to  the  left,
but  then  you  need  to  go  into  the  next  4 word  area,  to  fetch  the  bytes  that  go
into  the  second  area  of  the  first  4 word  area  and  so  on.  This  is  the  theory
behind  8 pixel  scrolling,  I don’t  think  I can  explain  it  better  than  that.  This  is
the  source  code  for  the  scroller.

jsr initialise

move.l #screen1,d0 put  screen1  address
in  d0

clr.b d0 put  on  256  byte  boundary

move.l d0,next store  address
add.l #32000,d0 next  screen  area
move.l d0,last store  address

movem.l font+2,d0 - d7
movem.l d0- d7,$ff8240 palette  moved  in

main
move.w #37,- (sp) wait  vbl
trap #14
addq.l #2,sp

move.l next,d0

clr.b $ffff820d clear  STe extra  bit
lsr.l #8,d0
move.b d0,$ffff8203 put  in  mid  screen

address  byte
lsr.w #8,d0
move.b d0,$ffff8201 put  in  high  screen

address  byte

move.w #$707,$ff8240 too  see  clock  cycles

cmp #0,font_counter check  if new  character  in
message

bne has_character if not,  skip  get  new  character

move.w #4,font_counter reset  font_counter
* we need  to  point  to  a  new  characetr  in  the  font

move.l message_pointer,a0 pointer  into  the  message



clr.l d0 clear,  just  to  be  sure
move.b (a0),d0 put  letter  ascii  value  in  d0

cmp #0,d0 end  of  message?
bne not_end if not,  branch

move.l #message,message_pointer reset
message_pointer

move.l message_pointer,a0
clr.l d0 clear,  just  to  be  sure
move.b (a0),d0 put  letter  ascii  value  in  d0

not_end
* now  we have  a  character  in  d0  for  sure

add.l #1,message_pointer point  to  next  character

add.b #- $20,d0 align  ascii  with  font  number
divu #10,d0 10  letters  per  row

move.w d0,d1 d1  contains  y value
swap d0
move.w d0,d2 d2  contains  x value

mulu #16,d2 16  bytes  for  each  letter
mulu #32,d1 32  lines  per  row
mulu #160,d1 160  bytes  per  row

move.l #font+34,a0 put  font  screen  start
in  a0

add.l d2,d1 add  x and  y value  together
add.l d1,a0 a0  points  to  correct  letter

move.l a0,font_address store  calculated  pointer

has_character
add.w #- 1,font_counter

move.l last,a0
move.l next,a1 load  screens
move.l a1,last and  flip  them  for  next  time

around
move.l a0,next doubble  buffering  :)
move.l font_address,a2 font  address

move.l #31,d1 32  lines  to  scroll
move.l #18,d0 19  16  pixel  clusters  +  font  part

scroll
move.b 1(a0),(a1)
move.b 3(a0),2(a1)



move.b 5(a0),4(a1)
move.b 7(a0),6(a1) 8 pixels  moved
move.b 8(a0),1(a1) watch  carefully!
move.b 10(a0),3(a1)
move.b 12(a0),5(a1)
move.b 14(a0),7(a1) first  4 word  area

filled

add.l #8,a0 jump  to  next  4 word  area
add.l #8,a1 jump  to  next  4 word  area
dbf d0,scroll keep  moving  16  pixel  clusters

move.l #18,d0 reset  loop  counter

move.b 1(a0),(a1)
move.b 3(a0),2(a1)
move.b 5(a0),4(a1)
move.b 7(a0),6(a1) 152  pixels  scrolled

move.b (a2),1(a1) now  last  8  pixels  from  font
move.b 2(a2),3(a1)
move.b 4(a2),5(a1)
move.b 6(a2),7(a1) 8 pixels  from  font

add.l #8,a0 point  to  beginning  of  next  line
add.l #8,a1 point  to  beginning  of  next  line
add.l #160,a2 next  line  of  font
dbf d1,scroll do  another  line

add.l #1,font_address next  byte  in  font
cmp #2,font_counter see  if it's  time  to  change  
bne font_increment
add.l #6,font_address align  to  next  16  pixels

font_increment

move.w #$0,$ff8240 black  background
again

cmp.b #$39,$fffc02 space  pressed?
bne main if not,  repeat  main

jsr restore

clr.l - (a7)
trap #1

include initlib.s

section  data



font incbin font.pi1

screen dc.l 0

font_address dc.l 0

font_counter dc.w 0

message dc.b "A COOL SCROLLER!   MOVING 8 PIXELS PER VBL "
dc.b "AND USING DOUBBLE BUFFERING    ",0

message_pointer dc.l message

next dc.l 0
last dc.l 0

section  bss

ds.b 256
screen1 ds.b 32000
screen2 ds.b 32000

Not  too  much  has  been  changed  since  the  16  pixel  scroller.  In the
beginning,  there’s  the  code  for  setting  up  two  screen  areas.  Then,  in  the  main
routine,  we put  one  screen  address  in.  Notice  also  how  the  font_counter  is
now  4 instead  of  2, because  we only  need  new  font  data  every  fourth  VBL. The
scroller  part  however  is  completely  new,  not  surprising  is  it?  It begins  with
loading  both  screen  areas  into  a0  and  a1,  and  then  flips  them  for  next  time
around.  Data  is  moved  as  described  above  for  19  loops,  this  means  304  pixels
are  moved,  the  last  16  need  special  care  though.  

First  8  pixels  scrolled  as  usual,  but  the  last  8  must  come  from  the
font.  This  is  also  not  to  strange,  since  every  second  byte  is  moved  into  the
second  bytes  of  the  words  on  the  screen.  Then  1 is added  to  the  font  address,
to  point  to  the  second  bytes  in  the  words.  However,  this  won’t  quite  do,  as  you
may  know.  The  step  from  the  second  byte  of  the  first  16  pixels  to  the  first
byte  of  the  coming  16  pixels  is  a bigger  jump  than  1, as  described  above.  

In order  to  make  this  bigger  step,  I test  the  font_counter,  to  see  if
it’s  time,  and  then  add  another  extra  6  to  the  font,  making  it  point  to  the  right
place.  If we don’t  do  this  extra  addition,  16  pixels  will be  moved  in  from  the
font  ok,  but  when  pixels  16  – 24  are  about  to  be  moved,  the  font  address  will
point  to  index  2 (meaning  the  first  8  pixels  again)  instead  of  index  8 into  the
font  memory.  Just  scroll  up  to  the  memory  example,  then  work  through  the
scroll  loop  on  a  piece  of  paper  or  in  your  head  and  it  will hopefully  become
obvious.  If it  doesn’t,  mail  me.  

That,  I think,  was  that.  The  big  problem  here  is  the  understanding
and  alignment  of  bytes  in  the  bit  plane.  What  to  keep  in  mind  really  is  that
first,  take  every  second  byte,  then  jump  a bit  to  get  on  the  next  16  pixel
boundary,  then  continue  in  that  way.  Indexing  goes  like  0, 1,  8, 9, so  to  speak.



Thus,  every  second  time  there’s  a  little  gap.  Since  I didn’t  do  any  timers  this
tutorial,  maybe  we’ll do  them  next  time.  

perihelion  of  poSTmortem,  2002- 05- 27

“Be formless,  shapeless,  like  water.  Now you  put  water  into  a  cup;
it  becomes  the  cup.  You  put  water  into  a  bottle;  it  becomes  the  bottle.  You  put
it  into  a  tea  pot;  it  becomes  the  tea  pot.  Now water  can  flow,  or  it  can  crash.  Be
water  my  friend.”

-  Bruce  Lee

Last  edited  2002- 06- 14


