
The Atari ST M68000 tutorial part 7 – on scrollers

Huh, so finally, as promised; the tutorial on scrollers. BTW, all my “huh”
sounds aren’t like American huh, as in a question or as in a “oh yeah?”, but
rather phew, like a sigh. Have you been waiting for this one? I hope you have,
because it was a damn pain in the ass to write the scroller program, even
though it’s simple. It began with me reaching to high, also, forgetting about
the bitplane layout of the graphics memory. When I put a little lower ambition
level, for the sake of keeping it simple, things went smoother. Now, Luca
Turilli playing in Winamp, the mood is set, time to write. The people who
already know how to do scrollers will probably laugh their ass off at this
clumsy scroller, which really is bad in every way except learning the basic
stuff, I’ll probably do a more advanced one later on; I’ve heard that building
on knowledge is good.

A few happy news first. I’ve gotten mail from three different
people, excluding Maarten Martens. Thanks guys, you know who you are! One
mail from FrEd highlighted a few misses I made, concerning the compatibility
with Devpac 2. My initlib had a little bug. It works fine in Devpac 3, but not in
2. Two lines had d0- 7 in them, it really should read d0- d7, but it’s fixed now. I
know some other things may also be difficult with other assemblers than
Devpac 3, so if the code doesn’t work for you, just use Devpac 3. I have tested
every piece of code with that on an original Atari ST(e), so there should be no
problem. Thanks go out to FrEd for pointing this out, and also to mOdmate of
Checkpoint for telling me a little about the workings of $fffc02.

Yep, a scroller. I’m a bit unsure of where to start, but I guess I’ll
just work from the top down. What does a scroller do? Letters go from the
right of the screen, to the left of the screen (usually). New letters are brought
in from the right, “outside” of the screen. How can this be achieved? The
screen memory needs to be moved “to the left”, and then we need information
to bring in the new characters from the right. OK, this seems to build on an
idea to have letters stored as graphics. Huhm, yes, we have a font collection in
a degas file. In that way, we’ll have letters in graphics format, we can take the
information from the font file and put it on the screen. Then, we move the
screen memory to the left. Easy? No, damn hard for a first timer at least.

Included in this tutorial should be a file called font.pi1, this is the
font file, I stole it from James Ingrams demo tutorials, so I wouldn’t have to
make my own. Immediately load this up and look at it, either using Degas, the
program from tutorial 6 or any other method. Looki looki, lots of characters
to choose from. Each character is 32 * 32 pixels big, resulting in 10 characters
per line. This is all well and fine, the next step is to actually know how to
point to the beginning of, for example, letter ‘C’. If we know where this letter
begins, we can put it on our screen simply by moving the data into the screen
memory. Just as we did when displaying a whole picture.

The font picture is aligned with the ASCII table, meaning that it
looks like the ASCII table does. In this tutorial should also be included the
ascii.txt file, in which you can look up the number for each character. As you
can see, space (the first character in the font), begins at $20, then comes ‘!’ at
$21 and so on. This means, that if we take the ASCII value for a character, and
subtract by $20, we’ll have the corresponding number in the font. Huhm, a
test perhaps. ‘C’ is at $43 in ASCII, subtract $20 makes $23, which is 35

(decimal). There are 10 characters per line, so we skip to the fourth line, begin
counting; 0 (>), 1(?), 2(@), 3(A), 4(B), 5(C), yay, right on! (remember to start
counting from 0).

Now we need to know what address this is at. The way to do this is
to put the beginning of the font picture address in an address register, and
increment by a number. Think of the font as a coordinate system, then ‘C’
would be at 3,5. We need to increment the pointer by a certain value for each
coordinate, this shouldn’t be to hard.

Each line is 160 bytes, and each character is 32 lines. This means
that for every Y coordinate, we need to increment the pointer by 32 * 160
bytes, right? Think about it, if we want ‘*’ which is on the second line (1,0), we
need to point to the font address + 32 lines down. Each character is 32 pixels
wide, 16 pixels are 4 words, taking up 8 bytes, we need twice this. So for each
X coordinate, we need to increment the pointer by 16 bytes.

Does this seem right? Let’s try. We want letter ‘C’, at 3,5. Thus we
should increment by 3*32*160 + 5*16 = 15440 bytes. ‘C’ is about the middle
of the screen and 15440 is about half of 32000, so it seems safe to assume
that the formula above is working. Question is, how do we get the X and Y
coordinates? We had a value for C, right, that was 35. The first digit seems to
be the Y coordinate, and the second the X coordinate. If we divide 35 by 10 we
get 3.5. 3 is the quotient and 5 the remainder. The instruction divu (DIVide
Unsigned) puts the quotient in the lower word of a data register, and the
remainder in the higher word. Swap is an instruction that swaps the low and
high word in a data register. Great! We now have what wee need. The code
looks like this:

move.l #character,a0 points to character
move.l #font+34,a1 points to pixel start

move.b (a0),d0 put letter ascii value in d0

add.b #- $20,d0 align asciin with font number
divu #10,d0 10 letters per row

move.w d0,d1 d1 contains y value
swap d0
move.w d0,d2 d2 contains x value

mulu #16,d2 16 bytes for each letter
mulu #32,d1 32 lines per row
mulu #160,d1 160 bytes per row

move.l #font+34,a0 put font screen start in a0

add.l d2,d1 add x and y value together
add.l d1,a0 a0 points to correct letter

section data

font incbin font.pi1

character dc.b “C”

Since each character is an ASCII value, we only use a byte to
represent it. If we put things inside “”, that means we want the ASCII value. So
the message dc.b “C”, means that message is a byte containing the ASCII value
for C. We could just as well have written message dc.b $43, but this is more
difficult to understand. Hopefully, the code will speak for itself with the
comments and the theory given above. This is not a complete program, but
just a code snippet to show the font part. More will follow.

We know how to point to the font, now we need to know how to
shift the screen memory, in order to achieve the scrolling effect. One would
think that all it took was a big loop moving bytes. Like so (a0 and a1 contain
the address of the screen memory)

add.l #1,a1 put a1 8 pixels ahead of a0
move.l #159,d0 scroll a line

loop
move.b (a1)+,(a0)+

For each loop we take the byte one byte ahead, and move it one
byte to the left. This should move 8 pixels each loop, right? Wrong! Totally
wrong! The screen is made of 16 pixel clusters, each cluster being 8 bytes long.
So when you just barge in and move single bytes like that, you’ll misalign the
whole shit. Not only will the colours be misaligned, the pixels will be as well.
Consider this memory configuration.

First byte Second byte
%11000000 %00000000 first word
%11000000 %00000101 second word
%01000000 %00000110 third word
%01100000 %00000000 fourth word
%00000000 ... fifth word

$3F800000 $00000642 pixels

If we use the move loop from above, the first byte will drop out,
the second byte will be moved into the first byte, the first byte of the second
word will go into the second byte of the first word and so on, in the end, we
get this.

First byte Second byte
%00000000 %11000000 first word
%00000101 %01000000 second word
%00000110 %01100000 third word
%00000000 %00000000 fourth word

$00000542 $17400000 pixels

Not really, the pixels we had before. So, in order to overcome this
in an easy way we move 16 pixels each time. This will produce a very fast
scroller, but an easy one to code for. If we move 16 pixels, we won’t have to
worry about getting misaligned bitplanes, since the 16 pixel clusters will never
be broken up, like they were above. a0 and a1 contains the screen address,
while a2 points to the character in the font.

add.l #8,a1 put a1 16 pixels ahead of a0

move.l #31,d1 32 lines to scroll
move.l #18,d0 19 16 pixel clusters + font part

scroll
move.w (a1)+,(a0)+
move.w (a1)+,(a0)+
move.w (a1)+,(a0)+
move.w (a1)+,(a0)+ 16 pixels moved
dbf d0,scroll keep moving 16 pixel clusters

move.l #18,d0 reset loop counter

move.w (a2),(a0)+
move.w 2(a2),(a0)+
move.w 4(a2),(a0)+ 16 pixels of the font
move.w 6(a2),(a0)+ character moved in
add.l #8,a1 increment screen pointer, align

with a0
add.l #160,a2 next line of font

dbf d1,scroll do another line

This is all just a bunch of move words, and some adds to keep
everything aligned. The first move section will move 4 words from a1, which
points one 16 bit cluster ahead of a0, to a0. This is repeated 19 times. After
this loop, a0 points to the beginning of the last 16 pixel cluster, and a0 points
to the beginning of the second line. For the last 16 pixel cluster, we want
information from the font, not from the screen. So here we move information
from a2 into a0. Instead of post incrementing a2, I use indexes. After the font
data is moved onto the screen, I add 8 to a1, so that it will again be 16 pixels
ahead of a0. Since a0 was incremented during the font move part, and a1 was
not. 160 is added to a2, so that the font pointer will now point to the next line
in the font. Repeat for 32 lines.

Now the two most important techniques have been covered, how to
know where the character is in the font, and how to scroll. Now we mix and
match. In order to synchronize the entire scroller to the VBL, I put a wait VBL
trap in the beginning of the main loop. Then I do my stuff, and in the end of
the main loop, I check if the space bar is pressed, if it is, just drop out of the
loop. If space bar is not pressed, then the main loop will begin again, with a
VBL wait, making sure that the main loop is looped through at 50 times a
second. You’ll probably be wondering exactly how I determine whether the
space bar is pressed.

This little piece will do the trick; cmp.b #$39,$fffc02. Uh, says you,
looking at the ASCII table (hopefully) and wondering how $39 can be space,
when it should be $20. The $fffc02 part can be easily guessed, this is probably
where the last key press end up, but why $39? ASCII deals with characters,
and special characters like line feed and so. There’s also something called scan
codes. Every key on the keyboard has its value, it’s scan code so you’ll be able
to determine what key was pressed. Look at the Scancodes.gif file included.

While we’re still on the topic, I might as well give you the full
detail. You can also check when a key is released, not just pressed. When the
key is released, the high bit of $fffc02 is set, meaning you get a whole
different value. Consider this.

%00111001 $39 space pressed
%10111001 $b9 space released

So, if you cmp.b #$b9, then you check if space is released. This can
be used in many fun ways, like changing the background to red when space is
pressed, then checking to see when space is released and then restore
background. Or accelerate a car in a car game until the button is released, at
which time you begin deceleration. I don’t know how often this is updated or
how fast you can really press keys. Say for example that you check $fffc02
every VBL to see what key is pressed and released, suppose this dude is like
Flash, and manage to press a button, then release it and press another within
1/50 of a second, then you’d loose the check for the release of the key, but I
doubt you’ll have to worry about this. Back to reality, here’s the scroller.

jsr initialise

movem.l font+2,d0 - d7
movem.l d0- d7,$ff8240

move.w #2,- (a7) get physbase
trap #14
addq.l #2,a7
move.l d0,screen store screen memory

main
move.w #37,- (sp) wait vbl
trap #14
addq.l #2,sp

cmp #0,font_counter check if new character in
message

bne has_character if not, skip get new character

move.w #2,font_counter reset font_counter
* we need to point to a new characetr in the font

move.l message_pointer,a0 pointer into the message
clr.l d0 clear, just to be sure

move.b (a0),d0 put letter ascii value in d0

cmp #0,d0 end of message?
bne not_end if not, branch

move.l #message,message_pointer reset
message_pointer

move.l message_pointer,a0
clr.l d0 clear, just to be sure
move.b (a0),d0 put letter ascii value in d0

not_end
* now we have a character in d0 for sure

add.l #1,message_pointer point to next character

add.b #- $20,d0 align ascii with font number
divu #10,d0 10 letters per row

move.w d0,d1 d1 contains y value
swap d0
move.w d0,d2 d2 contains x value

mulu #16,d2 16 bytes for each letter
mulu #32,d1 32 lines per row
mulu #160,d1 160 bytes per row

move.l #font+34,a0 put font screen start
in a0

add.l d2,d1 add x and y value together
add.l d1,a0 a0 points to correct letter

move.l a0,font_address store calculated pointer

has_character
add.w #- 1,font_counter

move.l screen,a0
move.l screen,a1
move.l font_address,a2
add.l #8,a1 put a1 16 pixels ahead of a0

move.l #31,d1 32 lines to scroll
move.l #18,d0 19 16 pixel clusters + font part

scroll
move.w (a1)+,(a0)+
move.w (a1)+,(a0)+
move.w (a1)+,(a0)+
move.w (a1)+,(a0)+ 16 pixels moved
dbf d0,scroll keep moving 16 pixel clusters

move.l #18,d0 reset loop counter

move.w (a2),(a0)+
move.w 2(a2),(a0)+
move.w 4(a2),(a0)+ 16 pixels of the font
move.w 6(a2),(a0)+ character moved in
add.l #8,a1 increment screen pointer, align

with a0
add.l #160,a2 next line of font

dbf d1,scroll do another line

add.l #8,font_address move 16 pixels forward in font

cmp.b #$39,$fffc02 space pressed?
bne main if not, repeat main

jsr restore

clr.l - (a7)
trap #1

include initlib.s

section data

font incbin font.pi1

screen dc.l 0

font_address dc.l 0

font_counter dc.w 0

message dc.b "A COOL SCROLLER! BUT A BIT FAST,"
dc.b " SCROLLING 16 PIXELS EACH VBL."
dc.b " THAT'S 2.5 SCREENS EACH SECOND!"
dc.b " ",0

message_pointer dc.l message

There are really only two more small things that are new; the font
counter and the message pointer. Also take not how I put in the scrolling
message, by just using lots of dc.b, and a ‘0’ as an end control character. By
changing the text here, you can obviously change the scroller message.
Perhaps to the well known “Hello World!”, which I most deliberately avoided.

So what’s the font counter and message address? Well, the font
counter keeps track of when it’s time to calculate a new address for a new
character. This is set to 2, because every second loop, a whole character has
been moved to the screen and the address for the next character in the
message will have to be calculated. Had we scrolled 8 pixels each VBL, the font
counter would have been set to 4 instead.

The message pointer is an index into the message. In order to know
which character to get next time, we must have some pointer into the
message. The message pointer begins by pointing to the message, which is
good, since that’s where the first character is. The first time through the main
loop, the font counter will announce that an address for a new character will
have to be calculated. That address is calculated and stored. The message
pointer will then point to the next character in the scroller message, which is
space, and so on. When the whole message has been scrolled through, the
value 0 (not character ‘0’) will be moved from the message. This is a signal
that the message is at an end, and the message pointer will be reset, once
again pointing to the start of the message. I hope it’s understandable, the one
tricky part is all the tests and branches, just walk through them a couple of
times, slowly. You can use pen and paper for this, or the MonST.

We’ve begun to get somewhere. If you’ve paid attention so far,
you’ll have acquired quite some programming skills. There are still some basic
things to cover, in order to be really self sufficient (mainly timers, double
buffering, sprites and bit manipulation) but you’re on a good way. Now might
be the time to look at alternative sources and learn something from there. For
example, you could begin to look at James Ingram’s demo coding tutorials.
That was where I began, I found them quite hard but now we’ve gotten more
or less to the level where he begins his stuff. That is that from me right now.
Upon request from MOdmate of Checkpoint, the next tutorial will probably be
on timers, I think. This means we’ll be able to remove the bottom and top
borders, cool stuff!

perihelion of poSTmortem, 2002- 04- 27

“My grandfather taught, me the energy of life goes in a circle, in a
perfect flow; balanced. He said, until I find my centre, my circle will never be
whole”

- The One

Last edited 2002- 06- 14

