
The Atari ST M68000 tutorial part 6 – of seeing behind the curtain of an
execution and getting intimate with files

Hiya’all, it’s been a little while since the last tutorial. Mainly because I wanted
to code a little bit for myself and not only write stuff. This tutorial will NOT be
about scrolling, unfortunately, but it will cover the theoretical base which
you’ll need to be able to do the scrolling as will be covered in the next tutorial.
However, after this tutorial, you may figure it out by yourself. Of course, the
thing you have to do to scroll, is to just move the correct screen memory bytes
to the correct place. This will be covered in depth in the next tutorial, promise.

We’re now beginning to get past the most fundamental theory, and
so our code is getting to be more and more advanced. This in turn means that
often, a program will assemble without errors, but it still won’t work the way
we want it to. Something somewhere is not as we thought it would be, a
variable might not be assigned the correct value, a mathematical equation
might not produce what we thought and so on; endless possibilities. This is
where the debugger comes in. Debugger? says you. To illustrate, let me tell
you this fairy tale.

In the olden days, there was a big computer. So big it was that two
men could not put their arms around it. The computer stood in the big
country that lies west of here, and all day long it crunched numbers. It was
very happy. Then, one day, it could not crunch numbers any more, something
was wrong and the computer fell sick. All the people in white robes, that saw
to the computers every need, were greatly distressed. No one knew what was
wrong. So, in a last desperate effort, they opened up the poor computer to
have a look inside. They found that a little bug had flown in, and that was the
root to the sickness. So, the people in the white robes removed the bug, and
the computer was again healthy. It was all smiles and could once again crunch
numbers all day long. Thus endeth the tale. (since this is a fairy tale, I make no
claims that the exact facts are true, but like all legends, it contain a grain of
truth)

Debugging, is the art of removing errors from source code. This is
actually very hard, and one can probably be as skilled in debugging as writing
code in the first place. Debugging usually takes at least half the time of
developing a program, so good planning and lots of time in the debugger is a
good thing indeed. Nowadays, bugs are errors in the source code, rather than
actually physical bugs. Debugging is getting rid of bugs, creating error free
code, and a debugger is a tool that helps you with this process. Devpac comes
with a debugger, called MonST, I guess it stands for MONitor ST.

After you’ve assembled to memory, instead of pressing alt+x and
run the program, you can press alt+m and run the MonST, henceforth refered
to as the debugger. Lots of information will pop at you, and after you’ve come
over the shock, you’ll start to make quick sense of it. There are three
“windows”, areas rather, registers, disassembly pc and the memory. The
disassembly pc area is your actual source code, the other two should speak
for themselves. When you are in debugger mode, instructions will be executed
one at a time, this allows you to see how each instructions change the content
of memory and registers. I’ll go through each area and what you do with it.

Registers, here you have the content of all data registers, all
address registers, the status register and the program counter. All values are

given in hex, which makes every to digits one byte, and each digit one nibble.
As you can see, there are eight digits for each data register, which makes sense
since you can store a longword in a data register. When data registers are
beginning to get filled with values, there will pop up some symbols, sometimes
strange, to the right of the register. These symbols are the ASCII equivalents
for each byte in the data register. We haven’t talked about ASCII I think, but
it’s the way to represent characters with numbers I mentioned back in tutorial
one. For example, the number $41 is the letter ‘A’.

The address registers are to the right of the data registers, and
work pretty much the same. To the right of the address registers, are the
memory content that the address register points to. Since there are four digits
to every group, each group is a word. Thus, to the right of each address
register, is the memory content of the first five words that the address register
points to. To the right of the memory content, you’ll also see ASCII
representations of the content, just as with the data registers.

Below the data registers, are the status register and the program
counter. The status register haven’t been mentioned much either, but it takes
note of several statuses of the ST, for now, it will probably be 0300 and you’ll
se a ‘U’ to the right of it. The U means User mode, and that’s what we’re in
now until we change it to Super visor. The status register will also keep track
if a mathematical operation results in an overflow and so on. An overflow is
when the number generated is bigger than can be stored, for example, adding
two data registers with very big values will generate a value to big to store in
one data register, so data loss will occur. Below the status register is the
program counter, and to the right of the program counter you’ll see the
instruction that it points to.

The disassembly area is the code you’re currently debugging. It will
look just like your source code. You can scroll up and down the code, and a
little arrow will indicate your current position. To execute a line of code, press
alt+z, to skip a line of code, press alt+s. Usually, you’ll want to skip jumping
into the initialise subroutine, because this takes some time and might also put
the ST in low resolution, making it hard to see anything. You’ll usually want to
go to the mathematical equations directly, to see what happens. There’s also a
very nice way to jump straight to a position of your choosing. You can put
“flags” in your source code, by entering the “command” illegal, then, when in
debugger mode, hit ctrl+r. This will execute all commands from your current
position to the next illegal position, you’ll have to skip past the illegal
instruction to continue, using alt+s. A great way for executing an entire loop
without stepping through it all.

The memory area is most interesting, this is where the entire
content of the memory is listed. By pressing m, you can type in the name of
any memory tag (variable) that you are using, and see what the memory that it
points to contains. If you’re smart, you’ll immediately type in ff8240, which
will take you directly to the palette. Unfortunately, that will get you little,
since this is protected memory, you’ll only see *’s.

You can change between these areas by pressing tab, and you can
only issue commands in the active area. When you are done debugging, you
don’t have to wait for the whole program to execute and terminate, just hit
ctrl+c, twice. Now this is useful, right? The best way to get to the workings of
the debugger is, like always in programming, to get to it; debug some simple

piece of code and see what happens to the registers and memory. Oh, yes, in
the memory area, you can also type in aN (where n is 0- 7) to get directly to the
memory area pointed to by an address register.

Now, onto file formats! A file is simply a collection of data. There
really is no such thing as a .pi1 (Degas Elite) file, or an .mp3 file. A file
contains data, so, this data is interpreted. Different things will happen
depending on how you interpret the data. Let’s say, for example, that we have
a file containing only a byte, and it holds this data

%01000001

Easy, says some paint program, these are the first eight pixels in
monochrome mode. Pixel number 2 and 8 is supposed to be black, the rest are
white. No, says the text editor, %01000001 is $41, which corresponds to ASCII
character ‘A’. This is the letter A. Nonsense, says the home taxation program,
%01000001 is a control code in my program that says this file represents a
terminated account… and so on. Programs interpret files, and do something
with the information. Since programs are also files themselves, interpreted by
the operation system, which is itself also files more or less, the whole shit is
build on subjective opinions on what to do with the data presented.

Given the information above, one might think that it’s a good way
to know how different programs interpret data, this is the knowledge of file
formats. In order to understand this, we will examine a very simple file
format, the Degas Elite .pi1 file format. It’s almost to simple really, but it’s
useful and we’re going to use it in our next tutorial. Usually, files have so
called file headers, which give some information about the file. For example, a
Windows BMP file, starts with the ASCII codes for ‘B’ and ‘M’, which makes
sense and gives a signal of what kind of file it is. It’s of a little nerdy interest
to know that each .exe file on the PC, starts with the ASCII codes for the
letters ‘MZ’, which was some hot shot in Microsoft back when they defined the
file format (and perhaps still). A good example of a file header could perhaps
be the resolution of an image, or the font type in a word processor file.

In order to examine files correctly, we need a so called hex editor.
A normal text editor will not do, since the text editor would interpret data as
ASCII code, we want a program that just presents the data in the file, and does
not interpret it in any way. With this hex editor, you can “hack” files yourself.
Say, for example, that you want a program that converts one graphic file
format to another, you’d need a knowledge of both file formats. Sit down with
a paint program, and a hex editor. Do some small changes in the paint
program, and watch what’s changing in the file with the hex editor. This is
tedious work, at best, and you’re probably better off trying to locate the
information somewhere. So, in order for you to begin and try out your efforts,
I will tell you how the .pi1 files look like.

First, there are two bytes giving the resolution, in low resolution,
it’s just 0, in medium, 1 and in high resolution 2.Then comes 32 bytes
containing the palette data for the picture. After that comes the pixel
information, looking exactly the way it does in the screen memory. And that is
that. Very simple file format indeed. So, how big is a .pi1 file then, only
knowing the above? 32034 bytes. 32000 bytes for the pixel information, 32
bytes for the palette, and two extra bytes in the beginning of the file. Here’s a

little program that will display a .pi1 file. (a little note; in Degas Elite, there are
32 bytes in the end containing information on animation and stuff,
uninteresting in our case)

jsr initialise

movem.l picture+2,d0 - d7 put picture palette in d0- d7
movem.l d0- d7,$ff8240 move palette from d0- d7

move.w #2,- (a7) get physbase
trap #14
addq.l #2,a7

move.l d0,a0 a0 points to screen memory
move.l #picture +34,a1 a1 points to picture

move.l #7999,d0 8000 longwords to a screen
loop

move.l (a1)+,(a0)+ move one longword
to screen

dbf d0,loop

move.w #7,- (a7) wait keypress
trap #1
addq.l #2,a7

jsr restore

clr.l - (a7)
trap #1

include initlib.s

section data
picture incbin jet_li.pi1

There are three new instructions here, movem and incbin and
include. Include is the easy one, just consider it as though you had pasted the
entire contents of the initlib.s file on the include line. As you will see, when
you assemble the code, this takes a while since the Atari needs to read the file
each time. Therefore, I strongly suggest you actually do paste the file in,
instead of just including it. Your choice.

Incbin, as you may have guessed, is the way to include files, they
fall under the section data. This puts the entire contents of the file in memory.
In this particular case, I put the entire contents of the .pi1 file called jet_li.pi1
at the memory position I choose to call picture. You can achieve the same
result by hand copying the content of jet_li.pi1. Something like

picture dc.b 0,0,0,0,$07,$11 …(this is the beginning of the file)

Movem MOVEs Multiple data from memory to registers or the other
way around. It can only move words and longwords. As you can see, I move
the memory from picture+2 into the data registers. This is great since all eight
data registers can hold all in all 32 bytes of data, since each colour is 2 bytes
of data, this means that the entire palette of 16*2 bytes of data fits precisely
into the eight data registers. The reason for picture+2 is that we want to skip
the first two bytes, since they only contain resolution information. After filling
the data registers with the palette, we just smack it in at the correct starting
address.

Then, it’s a question of putting the screen memory pointer in a0,
and the start of the pixel part of the picture in a1. The picture+34 is because
this is where the pixel part starts, 2 resolution bytes plus 32 palette bytes is
34 bytes that should be skipped in order to reach the pixel part. As shown in
the previous tutorial, the screen size is 8000 longwords. I just loop through
that amount, copying the content from the picture into the screen memory.
Easy? This is a small loader for .pi1 files. If you assemble this piece of code as
a .prg file (or just take my pre- assembled file), you’ll notice that the program
size will be 32494. Most of this is the .pi1 file itself, our added code is only
32494 – 32034 = 460 bytes. We now have a self- loading .pi1 image, nice.

If you think it would be amusing, you can add this little loader to
all your .pi1 files, in this way, you’ll never have to go through Degas to watch
them; they load themselves. Of course, you’ll get a .prg file instead of a .pi1
file, meaning that you can’t edit it with Degas. But then you could write your
own program for extracting the image information and turn it into a .pi1 file
again. Fun, right? Note; you don’t have to keep the original .pi1 file for this
“loader” to work, since the .prg file contains the data it needs for the image.

While we’re on the topic, I will mention, briefly, compression. You
must know what file compression is, it’s making a file smaller, but usually
useless, until you decompress, or unpack, it again. How does this work? The
file can’t just shrink, can it? Well, more or less, it actually can. Consider this
information.

%00000000
%11111111

The first byte is all 0’s, and the second one all 1’s. Suppose we
replace the information given with

08
18

and tell the program that after each 1’s or 0’s, there will be a
number that tells how many 1’s or 0’s there will be. If we have a file with big
areas of similar data, for example 50 bytes of 0’s and then 70 bytes of 1’s, this
so called compression algorithm would compress this information into four
bytes. It would look like this

050
170

or, just to give you some bit mathematics, we say that the high bit
of each byte controls whether it should be 1’s or 0’s, and the next seven bits
tell how many of each kind should follow, it would look like this.

%00110010 50 0’s
%11000110 70 1’s

That was that on compression. The above is a very simple
compression algorithm and if you use it, you may end up with files bigger
than they were from the beginning. I know file compression was a bit sketchy,
but if you get the part of how files work, the compression part shouldn’t be
that hard. Also, file compression might be covered more extensively later. So
far, I know very little myself since I haven’t used it for anything. I have no idea
how good file compression algorithms look or anything, so don’t ask. This is
just the theoretical base. Study carefully, since I’m going to use a .pi1 file for
the font in the upcoming scroller.

perihelion of poSTmortem, 2002- 04- 22

“Great! I love fighting.”

- Fong Sai- Yuk

Last edited 2002- 06- 14

