
The  Atari  ST M68000  tutorial  part  5 – of  the  workings  of  the  graphics  memory
and  minor  skills  in  branching

It’s 10:13  in  the  morning,  school  will start  at  1  o’clock  so  I have  some  spare
time  before  I’m at  it.  I’ve hooked  Direct  Connect  up  on  some  downloads;  one
Bruce  Lee movie  and  one  Yun  Fat  Chow  movie,  I’ve loaded  over  70  minutes
worth  of  Atari  chip  music  in  Winamp,  time  to  do  some  serious  writing.  

As promised  in  the  title,  this  tutorial  will be  all  about  the  graphics
memory,  which  really  is  all  you  need  to  manipulate  graphics  on  the  Atari.  So,
if you  really  try  hard,  you  should  be  able  to  do  scrollers  after  reading  this
tutorial,  but  don’t  overextend;  I plan  to  cover  scrollers  in  the  next  tutorial
anyways,  because  they  are  so  good  to  practice  your  skills.  First  though,  I
thought  I’d take  a  quick  repetition  and  just  go  over  a  few  basic  things.  

Symbol Meaning
# decimal  value
#% binary  value
#$ hexadecimal  value
$ memory  address,  expressed  in  hexadecimal
.b byte
.w word
.l longword

One  bit  is  either  a  1  or  a  0. There  are  8  bits  to  a  byte,  two  bytes  to  a
word  and  2 words  to  a  longword,  meaning  there  are  four  bytes  to  a  longword.
BTW, four  bits  are  called  a  nibble,  which  is  half  a  byte.  The  smallest
addressable  memory  block  is  a  byte,  meaning  that  every  count  of  an  address  is
a  byte.  This  means  that  if a0  points  to  $100,  and  you  do  a move.w  #10,- (a0),
a0  will point  to  $98.  A0 will decrement  by two,  because  a  word  is two  bytes.  If
a0  points  at  $100,  and  you  do  a move.l  #10,(a0)+,  the  value  in  a0  will be  $104,
since  a  longword  is  four  bytes.  The  value  at  memory  address  $100  will  be  10,
also,  in  the  previous  example  with  post  decrementation,  the  value  at  $98  will
be  10,  we don’t  know  the  value  of  $100.  

I find  it  easiest  to  organize  my  files  on  the  PC, and  then  transfer
what  I need  to  the  Atari.  You  can  booo  all  you  want,  I don’t  care! It’s really
easy  to  transfer  stuff  to  the  Atari,  all  you  need  is a  diskette  formatted  in  the
correct  way,  you  can  even  use  a  PC disket te.  If you  look  at  an  old  Atari  disk,
and  a new  PC disk,  you  will see  one  big difference;  there  is  a  whole  on  the  left
side  of  the  PC disk,  on  the  same  spot  that  the  write  protection  whole  is  at  on
the  right  side,  on  the  Atari  disk,  there  is  no  hole.  Default  size  for  Atari  disks
are  720  k, whereas  on  the  PC, it’s  1.44  megs  (twice  720  k). 

Sometimes,  you  can  use  PC disks  for  the  Atari  without  any
modifications,  just  format  it  to  720  k, the  default  if you  format  it  in  GEM on
the  Atari.  If this  doesen’t  work,  just  put  some  tape  over  the  hole,  this  way,  the
PC disk  will look  like  an  Atari  disk.  Great  huh?  Now you  can  organize  your
files  on  the  PC, and  have  loads  of  stuff,  then,  when  you  need  it  on  the  Atari,
just  put  the  files  you  want  over  on  a  disk  and  use  it.  This  disk  will work  fine
on  both  systems.  Only  restriction  is  that  you  must  have  it  in  720  k format.
This  can  also  be  done  on  the  PC by formatting  in  this  way “format  a: /f:720”.  If



you  didn’t  know  this,  you’ll probably  kick  my  ass  for  not  telling  you  earlier,
hehe,  suffer.  

Now, on  to  coding  again.  As you  may  have  guessed,  what  you  see
on  the  monitor  (or  TV) is  controlled  by memory  in  the  Atari.  Before  explaining
that,  however,  I shall  go  into  the  different  resolutions.  There  are  low,  medium
and  high,  easy  as  pie.  High  resolution  is  that  which  we find  only  on
monochrome  monitors,  it’s  640*400  pixels,  and  uses  only  two  colours.
Medium  resolution  is  640*200  pixels  and  uses  four  colours.  Finally,  the  most
interesting  resolution  is  low,  featuring  320*200  pixels  with  16  colours.  A pixel,
btw,  is  a dot  on  the  screen,  if you  look  closer  in  a  game  or  so,  you’ll  se  that  the
spaceship /du de /wha tever  is  build  up  of  small  dots,  those  are  pixels.  The
upper  left  corner  is  considered  0,0  in  a  coordination  system,  and  the  bottom
right  corner  is  the  maximum.  Thus,  in  low resolution,  the  pixel  at  0  x and  0 y
is  in  the  left  uppermost  corner,  and  the  pixel  at  319  x and  199  y is  at  the
bottommost  right  position.  

How, then,  is  this  represented  in  memory?  For  high  resolution,  it’s
very  simple,  each  pixel  is  represented  by a  bit,  either  1  (black)  or  0  (white).
Thus,  if you  change  the  first  bit  in  the  graphics  memory  (sometimes  also
called  screen  memory),  you  will change  the  bit  in  the  left  uppermost  corner,
the  pixel  at  0,0.  If you  change  the  last  bit  in  the  screen  memory,  you’ll  change
the  pixel  at  639,399.  Since  one  pixel  is  represented  by one  bit,  it’s  easy  to
calculate  how  much  memory  is  used,  8  pixels  are  one  byte.  16  pixels  one  word
and  a longword  will hold  data  for  32  pixels.  640*400  =  256000,  the  number  of
pixels  total.  If we divide  this  by 8,  we will get  how  many  bytes  the  screen
memory  will have  to  be,  this  is  32000  bytes.

In medium  resolution,  we have  four  colours.  Huhm,  four  colours,
how  do  we represent  a  value  between  0 and  3? Well, we can  use  two  bits,  since
%11 (binary  11)  is  3.  So now,  we need  two  bits  to  represent  each  pixel.  Also,
the  number  of  possible  lines  have  dropped  by half  to  200  instead  of  400,
meaning  that  medium  and  high  resolution  both  use  32000  bytes  of  memory.
You  might  think  that  the  two  bits  for  each  pixel  are  right  next  to  each  other,
not  so,  they  are  spread  over  what  you  call  bit  planes,  but  that  will come  in  just
a  little  sec,  since  it’s  extremely  complicated.  

Low resolution  has  16  colours.  %1111  is  15,  so  we need  4 bits  to
represent  each  pixel  in  low resolution.  The  number  of  pixels  per  line  is
reduced  by half,  and  the  number  of  bits  per  pixel  is  doubled,  meaning  that  we
still  have  32000  bytes  of  screen  memory.  If you  don’t  believe  me,  we’ll do  the
math  again.  320*200  is  64000  pixels,  each  pixel  needs  4 bits  to  represent  it,
meaning  256000  bits,  at  eight  bits  to  a byte,  we again  get  32000  bytes.  

On  to  the  bit  planes,  I will go  through  how  it  works  in  low
resolution,  since  that  is  the  most  interesting  mode  and  the  exact  same
technique  is  used  in  medium  resolution,  but  with  only  two  bit  planes  instead
of  four.  OK, here  goes.  The  pixels  are  stored  in  words,  in  groups  of  16
(remember,  16  bits  in  a  word).  The  first  16  pixels  are  thus  stored  in  4 words,
which  come  after  one  another.  Thus,  the  first  4 words  of  the  screen  memory
are  used  to  store  the  first  16  pixels.  I’m feeling  I’m loosing  it  here,  this  is
damn  hard  to  explain,  and  it  took  me  weeks  before  I got  it  myself.  

The  bit  in  the  first  word  is the  least  significant  bit  in  the  colour
number.  Least  significant  means  the  rightmost  bit,  since  this  is  the  one  that
affect  the  value  the  least  (it either  adds  one  or  zero  to  the  final  value),  while



the  most  significant  bit  is  the  leftmost  bit.  The  bit  in  the  fourth  word  is the
most  significant  bit  in  the  colour  number.  The  first  bits  in  the  first  four  words
control  the  first  pixel.  Are  you  confused  yet?  An example  perhaps.

Graphics  memory
%1000000000000000 first  word
%0000000000000000 second  word
%0000000000000000 third  word
%0000000000000000 fourth  word

Colour  number  of  pixels
$1000000000000000

The  only  bit  that  is  set,  is  the  most  significant  bit  of  the  first  word
in  the  series.  The  term  "set", means  that  a  bit  has  the  value  1, and  not  0. This
means  that  the  first  pixel  will be  colour  1. Here’s  another  example  for  ya

Graphics  memory
%1100000000000000 first  word
%1100000000000101 second  word
%0100000000000110 third  word
%0110000000000000 fourth  word

Colour  number  of  pixels
$3F80000000000642

As you  can  see,  just  read  top  down,  and  you’ll  have  it.  

So, in  order  to  address  the  17 th  pixel,  you’d  first  have  to  “jump
over”  the  first  four  words  of  graphics  memory,  then  manipulate  the  first  bit  in
the  next  four  words.  This  makes  pixel  manipulation  a pain  in  the  ass,  since
not  only  do  you  have  to  change  values  in  four  different  places,  but  you  also
have  to  work  with  bit  manipulation.  All in  all,  very  tedious  and  time
consuming  work.  Just  for  comparison,  there  is  a  graphics  mode  on  the  PC, the
MCGA mode,  which  is  extremely  user  friendly.  It also  has  320*200  pixels,  but
256  colours  instead.  Does  this  value  ring  a  bell?  It’s a  byte! So, each  pixel  is
represented  by a  byte,  making  it  a  wonder  of  ease  of  use.  In order  to  change
the  pixel,  you  just  have  to  address  the  correct  byte,  which  is  dead  simple.  It
would  be  done  like  this,  move.b  #255,(a0)  where  a0  points  to  address  memory.
This  would  change  the  first  pixel  to  colour  255.  Or to  change  the  third  pixel,
move.b  #255,3(a0).  But  to  change  the  first  pixel  on  the  Atari,  in  low  resolution,
we instead  have  to  do  something  like  this.  

a0  points  to  screen  memory
move.w #%1000000000000000,(a0)
move.w #%0000000000000000,2(a0)
move.w #%0000000000000000,4(a0)
move.w #%0000000000000000,6(a0)



This  sets  the  first  pixel  to  colour  1. The  numbers  before  “(a0)” are,
as  you  might  recall,  indexes  to  memory,  so  “2(a0)” means  where  a0  points  plus
two.  Since  we constantly  want  to  point  to  the  next  word,  we must  increase  the
pointer  by two  bytes  each  time.  We could  also  have  used  a “(a0)+”  in  order  to
increment  the  pointer,  but  then  a0  would  not  have  pointed  to  the  beginning  of
the  screen  memory  anymore.  It all  depends  on  what  you  want  to  be  doing.
Also  note,  that  since  we move  information  in,  any  information  previously
there,  will be  lost.  If, for  example,  pixel  three  and  four  already  had  values  of
some  kind,  and  we executed  the  commands  above,  they  would  become  colour
zero,  since  information  regarding  them  would  be  overwritten  with  all  zeros  as
shown  above.  

Now you  hopefully  possess  the  knowledge  necessary  for
understanding  my  short  little  program.  Let  me  just  stress  that  really  getting
the  workings  of  the  graphics  memory  is  very  difficult.  What  bit  goes  where,
what  bit  does  what,  and  so  forth,  so  don’t  despair  when  you  don’t  get  it  right
away;  you  have  a  long  way  ahead  of  you.  Oh,  I realized,  I have  some  more
things  to  tell  you.  

A scan  line  is  a  row  of  pixels,  there  are  200  scan  lines  in  low
resolution.  That’s  easy  enough.  The  other  thing  I have  to  tell  you  is  about  the
VBL, or  Vertical  BLank.  The  Atari  operates  in  either  PAL (Phase  Alternating
Line) or  NTSC (National  Television  Standards  Committee);  NTSC is  American
standard  and  PAL European.  Since  I’m from  Europe  and  it  also  seems  that
most  Atari  related  stuff  is from  Europe,  NTSC will be  given  little  support,  take
that  Yankees.  The  PAL or  NTSC has  to  do  with  how  many  times  per  second  the
screen  is  updated,  in  NTSC, it’s  60  times  per  second,  and  in  PAL it’s  50.  Thus,
the  so  called  refresh  rate,  is  either  50  or  60  Hz.  On  game  menus,  you  can  often
change  between  these  modes.  When  I was  little,  and  only  played  games,  I never
got  what  the  50/60  selection  on  the  game  menu  was  about,  now  I do.  Since  we
use  PAL, the  refresh  rate  on  our  stuff  will be  50  Hz,  meaning  that  the  monitor
is  updated  50  times  per  second.

The  screen  is  painted  by an  electron  beam,  that  starts  in  the  upper
left  corner,  and  then  works  it  way  down,  doing  a scan  line,  and  then  moving
on  to  the  next.  This  happens  50  (or  60)  times  every  second.  It’s good  practice
to  synch  your  graphics  with  this  beam,  this  will be  further  expanded  in  the
next  tutorial.  There  is  a trap,  that  will put  the  system  in  pause  until  the  next
VBL, that  is,  the  next  time  the  electron  beam  is  about  to  paint  the  screen.  This
is  an  excellent  timer,  and  will  allow  you  to  know  exactly  how  much  time
everything  takes.  Just  think  about  it,  if you  put  the  wait  for  VBL trap  in  the
beginning  of  your  main  loop,  you’ll  know  that  the  loop  will  perform  50  times
per  second.  This  is  ideal  for  making  games  or  demos  not  run  to  fast.  The  trap
function  number  is  37,  it’s  called  by XBIOS and  looks  like  this:

move.w #37,- (a7) wait  vbl
trap #14 call  XBIOS
addq.l #2,a7 clean  up  stack

This  is  a  good  thing  to  include  in  your  graphics  library  if you  have
one,  if you  don’t,  you  might  think  about  making  one.  

I realize  when  looking  over  the  source  code  again,  that  there  are
some  more  things  to  explain.  Hehe,  well,  at  least  I explain  them  sometime,  and



I don’t  just  dump  the  source  code  on  you  and  let  you  browse  through  those
instruction  sets  and  figure  things  out  for  yourself.  Of course,  it’s  a good  thing
to  know  where  the  graphics  memory  is, unlike  some  other  computers  that  has
a fixed  location  for  the  screen  memory,  the  Atari  can  use  any  part  of  the
memory.  This  simple  trap  will put  the  address  of  the  graphics  memory  in  d0,
which  you  then  can  move  into  the  address  register  of  your  choice.  

move.w #2,- (a7) get  physbase
trap #14 call  XBIOS
addq.l #2,a7 clean  up  stack

move.l d0,a0 a0  points  to  screen

Actually,  it  might  be  somewhat  of  a  bad  habit  to  use  registers  d0-
d2  and  a0- a2  unless  you  have  to,  since  those  registers  can  be  destroyed  by,
for  example,  calling  traps,  and  other  similar  things  handled  by parts  you  don’t
have  full  control  over.  Physbase  here  stands  for  physical  base,  and  means  the
physical  base  of  the  graphics  memory.  Note  also,  that  when  moving  addresses,
like  the  last  command  above,  you  should  always  use  longword  size.  This  is so
because  the  Atari  uses  24- bit  addresses,  each  address  is  24- bits  long,  and  if
you  only  move  a word,  or  heavens,  a  byte,  information  will be  lost.  

What  more,  oh  yeas,  the  dbf  and  clr  commands.  We’ll start  with  the
easy  one,  clr.  CLeaR clears  all  bits  in  the  effective  address  operand.  In clear
English,  this  means  “make  something  zero”.  For  example:

move.l #$100,a0
move.l #10,d0
move.l d0,(a0)
clr.l d0
clr.l (a0)

Now both  d0  and  $100  will  contain  zero.  
The  dbf  command  is  a  bit  special.  Instead  of  dbf,  you  can  also  use

dbra.  It is  used  for  making  a loop  a certain  amount  of  times,  it’s the  equivalent
to  a  for- loop  in  high  level  languages.  When  using  the  command,  you  give  a
controlling  data  register,  and  the  address  to  loop.  Each  time,  the  data  register
will get  decremented  by one,  and  then  it  will be  tested  to  see  if it’s  - 1, if it’s
not,  the  execution  will jump  to  the  given  address.

move.l #$100,a0
move.w #4,d0 execute  loop  5 times

loop
move.l d0,(a0)+
dbf d0,loop

So, can  you  figure  out  what  the  memory  configuration  will be  for
this?

Memory Value
$100 4



$104 3
$108 2
$10C 1
$110 0

(some  hex  counting  training  as  well,  aren’t  I nice?)
Since  the  value  gets  decremented  right  before  it’s  tested  for  - 1,  the

loop  is  never  looped  through  with  the  value  - 1.  So, if you  want  a  loop  to  loop
five  times,  put  four  in  the  controlling  data  register.  Remember  that  on  the  last
loop,  the  data  register  will contain  zero.  That  should  be  it,  finally,  we can  get
to  my  training  program.  You  should  be  able  to  figure  it  out  yourself,  but  I hate
it  when  people  say  that  and  I still  have  many  questions,  so  I’ll walk  you
through  it.  

The  program  fills  the  first  60  scan  lines  with  colour  1, the  next  60
with  colour  2 and  the  next  60  with  colour  3. Then  it  sets  the  colour  values  for
these  three  colours  to  the  maximum  level  of  the  three  “main  colours”,  RGB, or
red,  green  and  blue.  When  this  set  up  is done,  it  decrements  the  value  for  each
colour  by one  every  half  second,  when  the  values  reach  zero  (black)  the
program  terminates  itself.  The  countdown  itself  is  achieved  by first  waiting  25
VBL’s, and  then  running  through  7 such  waits.  

jsr initialise

move.w #2,- (a7) get  physbase
trap #14
addq.l #2,a7

move.l d0,a0 a0  points  to  screen

* clears  the  screen  to  colour  0, background
move.l #7999,d1 size  of  screen  memory

clrscr
clr.l (a0)+ all  0  means  colour  0  :)
dbf d1,clrscr

move.l d0,a0 a0  points  to  screen

* fills  screen  with  colours,  ok  180  scanlines  :)
move.l #1199,d0 60  scanlines

fill1
move.w #%1111111111111111,(a0)+
move.w #%0000000000000000,(a0)+
move.w #%0000000000000000,(a0)+
move.w #%0000000000000000,(a0)+
dbf d0,fill1 filled  with  colour  1

move.l #1199,d0 60  scanlines
fill2

move.w #%0000000000000000,(a0)+
move.w #%1111111111111111,(a0)+



move.w #%0000000000000000,(a0)+
move.w #%0000000000000000,(a0)+
dbf d0,fill2 filled  with  colour  2

move.l #1199,d0 60  scanlines
fill3

move.w #%1111111111111111,(a0)+
move.w #%1111111111111111,(a0)+
move.w #%0000000000000000,(a0)+
move.w #%0000000000000000,(a0)+
dbf d0,fill3 filled  with  colour  3

move.w #$000,$ff8240 black  background
move.w #$700,$ff8242 red  colour  1
move.w #$070,$ff8244 green  colour  2
move.w #$007,$ff8246 blue  colour  3

move.l #24,d5 25  VBL’l per  loop
move.w #6,d6 make  7 loops

main
move.w #37,- (a7) wait  VBL
trap #14
addq.l #2,a7

dbf d5,main loop  vbl's

add.w #- $100,$ff8242 subtract  one  from  red
add.w #- $010,$ff8244 subtract  one  from  green
add.w #- $001,$ff8246 subtract  one  from  blue

move.l #24,d5 reset  VBL counter

dbf d6,main end  of  main  loop

jsr restore

clr - (a7)
trap #1

initialise
* set  supervisor

clr.l - (a7) clear  stack
move.w #32,- (a7) prepare  for  user  mode
trap #1 call  gemdos
addq.l #6,a7 clean  up  stack
move.l d0,old_stack backup  old  stack

pointer
* end  set  supervisor



* save  the  old  palette;  old_palette
move.l #old_palette,a0 put  backup  address  in  a0
movem.l $ffff8240,d0 - d7 all  palettes  in  d0- d7
movem.l d0- d7,(a0) move  data  into  old_palette

* end  palette  save

* saves  the  old  screen  adress
move.w #2,- (a7) get  physbase
trap #14
addq.l #2,a7
move.l d0,old_screen save  old  screen  address

* end  screen  save

* save  the  old  resolution  into  old_resolution
* and  change  resolution  to  low (0)

move.w #4,- (a7) get  resolution
trap #14
addq.l #2,a7
move.w d0,old_resolution save  resolution

move.w #0,- (a7) low  resolution
move.l #- 1,- (a7) keep  physbase
move.l #- 1,- (a7) keep  logbase
move.w #5,- (a7) change  screen
trap #14
add.l #12,a7

* end  resolution  save

rts

restore
* restores  the  old  resolution  and  screen  adress

move.w old_resolution,d0 res  in  d0
move.w d0,- (a7) push  resolution
move.l old_screen,d0 screen  in  d0
move.l d0,- (a7) push  physbase
move.l d0,- (a7) push  logbase
move.w #5,- (a7) change  screen
trap #14
add.l #12,a7

* end  resolution  and  screen  adress  restore

* restores  the  old  palette
move.l #old_palette,a0 palette  pointer  in  a0
movem.l (a0),d0- d7 move  palette  data
movem.l d0- d7,$ffff8240 smack  palette  in

* end  palette  restore

* set  user  mode  again



move.l old_stack,- (a7) restore  old  stack  pointer
move.w #32,- (a7) back  to  user  mode
trap #1 call  gemdos
addq.l #6,a7 clear  stack

* end  set  user

rts

section  data

old_resolution dc.w 0

old_stack dc.l 0

old_screen dc.l 0  

section  bss

old_palette ds.l 8

Oh,  naughty  me,  I added  a bunch  of  stuff  to  my  initlib  without
telling  you  about  it.  Well, right  now,  you’ll  just  have  to  accept  it,  any  problems
with  that  private!?  The  thing  it  does  is to  save  all  information  regarding
resolution,  screen  setup  and  so  on,  then  change  to  low resolution.  When  the
restore  subroutine  is  called,  it  restores  everything  as  it  was.  While  time  goes
by, I probably  won’t  dump  all  my  source  code  into  my  tutorials,  for  example,
an  include  initlib.s  will probably  be  the  way  in  the  future.  I’m also  thinking
about  sticking  to  just  give  out  the  separate  .s file  with  the  source  code,  and
only  comment  it  here  in  the  main  tutorial  so  you  won’t  have  the  same  code  in
two  places.  How  does  that  sound?  You  curious  types  can  go  through  the  initlib
code,  and  try  to  figure  it  out,  I have  commented  it  quite  well  just  so  you  can
do  that.  

There  might  be  some  problems  with  the  math  here,  in  the  clear
routine,  8000  is given  as  the  screen  size.  Yes, 8000  longwords,  8000*4  =
32000  bytes.  1199,  or  rather  1200  should  equal  60  scan  lines?  Yes, every  pass
through  the  fill- loop  moves  4 words.  4 words  contain  information  for  16
pixels,  meaning  that  for  every  loop,  16  pixels  will be  set.  320*60=19200  pixels
total  (320  pixels  per  scan  line), and  since  we set  16  pixels  per  loop,  we divide
this  value  by 16  to  get  the  total  number  of  loops,  which,  incidentally,  is 1200.
That  should  clear  any  trouble  with  the  numbers.

I hope  there’s  no  trouble  with  the  main  loop  part,  the  first  little
loop  is  all  about  making  25  VBL’s, in  other  words,  waiting  for  0.5  seconds.
Then,  the  colour  values  are  changed,  making  the  colours  1,2  and  3 go  towards
black.  Lastly,  another  loop  controller  that  makes  sure  the  main  loop  is  looped
through  seven  times.  

Now that  you  are  equipped  with  basic  knowledge  of  the  graphics
memory,  I think  we’ll be  able  to  handle  a  scroller  in  the  next  part.  It depends,



I’ll have  to  write  one  and  see  if it’s  not  to  complex.  If it  is  to  complex,  you’ll
probably  be  looking  at  a  theory  tutorial  again.  

perihelion  of  poSTmortem,  2002- 04- 12

“She  doth  teach  the  torches  to  burn  bright”

-  Romeo  and  Juliet
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