
 The Atari ST M68000 tutorial part 3 – of various things mystic and important,
mainly concerning the art of understanding digits and performing traps

Hello again! I’ve gotten some positive feedback on the first two tutorials, so
I’m glad to begin writing this third one. As promised, I’ll try to explain how
computers think when it comes to numbers, the layout of the Atari hardware
which will guide us to the workings of traps. I bet a very few understood
anything about that.

So, now I’ll try to explain what may have been a bit lofty in the
previous two parts of the tutorial; how we express numbers. When you see
three rocks, you count them, one, two, and three. We have speech in order to
communicate our thoughts and emotions to other people, and we have writing
in order to communicate speech in written form. We use numbers to
communicate “counting”. We have chosen the symbol ‘3’ to express the
amount you reach when counting one, two and three. However, this value, this
“there are three things of something”, can of course be written in different
ways.

Our number system is based on base 10, meaning that we have ten
different symbols to express values, one of them being no values (also known
as zero), which leave us with the ability to count to nine. Once the number
nine has been reached, we need to start using numbers over again, we don’t
have a symbol for the value ten, so we have to combine the numbers we have
in some way in order to express this. What we do is to say that different
positions are “worth” different. For example, in the expression 23, the number
2 is worth ten times as much as three. Do we see a connection here? We use
base 10, each number is worth ten times as much as its predecessor. In the
expression 123, 1 is worth ten times as much as 2, and one hundred times as
much as 3. To calculate the value of the expression 123, we really use this
formula

(1 * 10 ^ 2) + (2 * 10^1) + (3 * 10^0)

the generic formula looks like this

value * base^position …

OK, you say hesitantly, perhaps I understand something of what
you’re trying to say; now what about computers? Computers use base 2, they
are binary and can only count 1’s and 0’s. There is either current through a
circuit, or there isn’t. They only use two symbols to express values. As you can
imagine, the result is very long expressions, like
101010101011101000101010. For presenting the value three, the computer
uses the symbols 11. Using our generic formula above, we translate this to

1 * 2^1 + 1 * 2^0 = 3

For expressing the number five, we would get 101

1 0 1
1 * 2^2 + 0 * 2^1 + 1*2^0 = 5

4 + 0 + 1 = 5

Think of it as tumblers, when we have base 10, the tumbler starts
at zero, make nine “ticks”, then the tumbler directly to the left makes one tick
displaying one, the first tumbler reaches zero again, make nine ticks, the left
tumbler makes one tick, reaching two, the first tumbler starts at zero again.
When the second tumbler is at nine, and the first tumbler is also at nine, the
next tick will take both tumblers back to zero, and a third tumbler, the one
directly to the left of the second tumbler, will go from zero to one, and so
forth. If we have base 2, there are only two numbers on the tumblers, 1 and 0.

In order to facilitate things, we also have base 16, or hexadecimal
numbers. The reason for this is that conversion between decimal (base 10) and
binary (base 2) numbers are somewhat cumbersome, while conversation
between hexadecimal, or hex for short (base 16) and binary is fairly easy. We
use binary because the computer thinks in binary, we use hex because it’s
easier to convert binary into hex rather than decimal, and hex is much more
manageable (less symbols required to express the same value), and of course
we use decimal because we think in decimal.

If you’ve understood what I said above, you’ll wonder how on Earth
we use hexadecimal values, since we would need six more symbols for
expressing the values ten, eleven, twelve, thirteen, fourteen and fifteen. We
simply use letters from our alphabet. A = ten, B = eleven, C = twelve, D =
thirteen, E = fourteen and F = fifteen. So to express the value fifteen in hex,
we simply use ‘F’. To express sixteen, we get 10 (1*16^1 + 0*16^0). Seventeen
is 11 (1*16^1 + 1*16^0. AF would mean one hundred and seventy five
(10*16^1 + 15*16^0) and finally F5A would be three thousand nine hundred
and thirty (15*16^2 + 5*16^1 + 10*16^0). If you don’t get all this, this topic
will probably be covered by every beginners book and tutorial out there, go
find an additional source of information.

In Devpac, values are expressed by putting ‘#’ in front of a number,
then further using ‘$’ or ‘%’ before numbers to indicate hexadecimal or binary
numbers. Thus, ‘#’ means decimal, ‘#$’ means hexadecimal value and ‘#%’
means binary value. So, as you see, it’s customary to express memory
addresses in hexadecimal. ‘$’ (without ‘#’) means value at memory address.

Huh, that was that, now onto the architecture of the Atari! Every
computer comes with a processor of different (or similar) brands, the Atari
has a M68000 processor, so does the Amiga 500. The PC has an 8086 and so
on. The processor comes with a different set of instructions and ways of
working. This is the real challenge of assembly programming, you must know
how the processor behaves that you are trying to program. In high level
languages, such as Pascal and C, the programming language usually handles
the processor dependent parts, and the code is much more portable between
different platforms (computers). Assembly programming however, deals with
processor level instruction, which makes it much more powerful and
controllable. What the high level languages do, is to take the source code and
“translate” it into low level (assembly) language, which of course brings waste,
since we can tailor make our programs in assembly, while high level languages
have to be more generic (since they weren’t tailor made for a specific
processor).

This is a good time to acquire a set of M68000 instructions, you
will need to refer to these, also a good guide to the ST’s hardware would be
most useful, the ST Internals for example. With this tutorial should be a listing
of the M68K instruction set, called INSTRSET.TXT. In order to explain the
GEMDOS trap routine we used in the last tutorial, I’ll have to explain registers.
The M68K (K here stands for kilo, meaning 1000, thus M68K and M68000 are
synonyms) have 16 registers plus one extra; eight data registers and eight
address registers plus a program counter. The program counter is really an
address register that points on the next instruction to be performed, simply
put, it keeps track of the program execution so that the Atari knows where it’s
at.

The eight data registers work as eight variables that can store data.
The eight address registers are used to store addresses, addresses work like
pointers to larger chunks of data, as explained in tutorial one. Here is a usage
example of the data register.

move.w #10,d0 put value 10 into data register zero
move.w #5,d1 put value 5 into data register 1
add d1,d0 adds d1 to d0 and stores value in d0

d0 now holds value 15

The address register seven (a7) is worth special mentioning, this is
the so called stack. The stack is a lovely pile of data that are used in many
ways, for example by the trap instructions. It’s of special importance to the PC
programmer, since the 8086 have very few registers, the stack is used as a
temporary variable, the M68K however is equipped with many registers
making the usage of the stack as a temporary variable a bit unnecessary (I
hope that no super smart programmer reads this and thinks; what an idiot).

OK, on to the traps. There are three parts of the Atari that can
perform traps; the GEMDOS, the BIOS and the XBIOS. The GEMDOS is the
hardware independent part of the operating system, this means that the
GEMDOS will work on different set of hardware on the Atari. The BIOS is
concerned with input and output, like keyboard input and so on, it works
between the GEMDOS and the hardware. The XBIOS handles the extended
features of the Atari hardware, whatever that means.

You call traps by putting the correct information on the stack, and
then calling the correct trap number and then cleaning up the stack. First, we
need a special number, called a function number, indicating what function we
want, for example, going into super mode is number 32 of the GEMDOS,
meaning that we have to put the number 32 on the stack, and then call trap #1
(which is the trap number associated with GEMDOS). Usually, you also need to
pass additional information to the Atari, this information is put on the stack
before the trap number, and then you call the trap. Thus, put any information
associated with the function on the stack, then put the function code on the
stack and then call the trap number that corresponds to the handler of the
function.

It feels a bit confusing with traps and trap numbers, I’ll try to sort
it out. The BIOS, XBIOS and GEMDOS each have several special instructions,
that aren’t in the processor, and do special things. Since they all three have
several functions, all three will have the function numbered 1. In the BIOS,

function 1 is a function for returning the input device status, in the GEMDOS,
function 1 gets a single character from the keyboard, and in XBIOS, function 1
will save memory space. This information must be gathered by referring to a
list of all traps available. In the ST Internals, there is a list of all the traps
available, and instructions on how to use them.

What you do is to specify what trap function you want by putting
information on the stack, then you call either BIOS, XBIOS or GEMDOS, and let
them do something with the information. As an example, I give you this
alternative way of changing the background colour. The “- (a7)” means put on
stack, we’ll cover that in the next tutorial.

move.w #$700, - (a7) colour red
move.w #0,- (a7) in colour 0, background colour
move.w #7,- (a7) function 7; Setcolor
trap #14 call XBIOS
addq.l #6,a7 clean up the stack

The first two move instructions put information regarding the call
on the stack, first the colour is passed, next the palette number to be changed.
Then, the trap instruction number (opcode) must be put on the stack, next we
call the XBIOS to process the information. Lastly, the stack needs to be cleaned
up so that none of the information we entered will be left, cluttering the
system. The code above does the same as

move.w #$700,$ffff8240 red background color

The difference is that we take the way around the XBIOS instead of
just smacking in the value directly to the memory, which as you can see is
much easier to write. Really, since every action taken by the computer only
changes the contents in memory, what the traps do is only to change the
memory. This we can, in most cases, do ourselves, but in some cases, to call a
trap may be easier, clearer and perhaps more also more safe (stable).

Now we are going to expand upon the program in tutorial two. It
gets tedious to run the program, and then change the background back by
running the program again. Good programs save all the data they change, in
order to restore it once the program is complete. Also, it would be nice to be
able to store the code for going in and out of super mode, since we will use
this in every program.

It’s a good idea to have your own libraries of code, which you can
cut and paste or include as you will in your code. Create a file called initlib.s
(for initialization library) and in it put the code for the super mode. This file is
for storing only, when you need the “go into super mode” instruction, you
know where you have it. The file initlib.s should have the following content.

initialise
* set supervisor

clr.l - (a7)
move.w #32,- (a7)
trap #1
addq.l #6,a7

move.l d0,old_stack
* end set supervisor

rts

restore
* set user mode again

move.l old_stack,- (a7)
move.w #32,- (a7)
trap #1
addq.l #6,a7

* end set user
rts

section data
old_stack dc.l 0

Well, actually, it can hold any content you want, since this is your
personal file, where you store what you find important. I have different
libraries to store different things that I need, for example graphlib.s and
iolib.s. Your libraries are for storing general purpose programming
instructions, like the code for entering super mode.

There are two ways of using your libraries, you can either refer to
your library, or you can just include your entire library in the source code you
are writing. Including your entire library into your source is somewhat
unprofessional, since you then get your libraries splashed all over the place,
and any changes or additions that you want to do to the library later on will
have to be implemented in all of your programs. The libraries should ideally
be kept in one place, to make it tidy and neat. So, in order to include your
library, use the include command, followed by the path to your library, like so

include \libraries \ ini tlib.s

However, there is a drawback to the method described above; every
time you assemble your code, you will have to load all your include files into
memory from disk, which takes time. Only the source code you are currently
working on is in memory, and any includes will have to be loaded every time.
So, in order to speed things up, I usually include my libraries (or rather, the
subroutines I need) into the source code I’m working at. This can be done with
the file – insert file command, which will append a file at the cursors position.
Or you can just copy and paste from your library into your source code as you
see fit

jsr initialise jump to initialise

move.w $ffff8240,d7 save background
color

move.w #$700,$ffff8240 red background color

move.w #7,- (a7) wait for a keypress
trap #1 call gemdos

addq.l #2,a7 clear up stack

move.w d7,$ffff8240 move back old color

jsr restore jump to restore

clr.l - (a7) clean exit
trap #1 call gemdos

initialise
* set supervisor

clr.l - (a7) clear stack
move.w #32,- (a7) prepare for user mode
trap #1 call gemdos
addq.l #6,a7 clean up stack
move.l d0,old_stack backup old stack

pointer
* end set supervisor

rts

restore
* set user mode again

move.l old_stack,- (a7) restore old stack pointer
move.w #32,- (a7) back to user mode
trap #1 call gemdos
addq.l #6,a7 clear stack

* end set user

rts

section data
old_stack dc.l 0

Soooo, what’s different? Our routines for getting into and out of
super mode have been neatly packed down the bottom of the code, the
command jsr (Jump to SubRoutine) will take us where we want. Then, we put
the value of the background colour in d7, saving it. Smack in the red colour.
Here comes another fine trap, when executed, it will wait for a key to be
pressed before continuing with execution. This trap will give the user a chance
to see the lovely red background colour, and then hit a key in order to
progress. Again, I looked after what I wanted in the ST Internals; something
that would allow the program to pause and wait for a key to be pressed, lo
and behold! I found it, and just copied the information. After this, the value
from d7 is put into colour 0, effectively restoring the old background colour.
Lastly, a jump to the restore subroutine and a clean system exit.

Now we have begun to forcefully control the program flow, the
code isn’t executed “top down”, but with commands such as jsr and rts
(Return from SubRoutine) we can jump around. Usually, programs are built up
of some initialization routine, and then a loop more or less, which only

consists of calling other sub- routines. A game of asteroids would for example
look something like this.

Go into low resolution
Set up player
Set up asteroids

Main loop
Move asteroids
Check for collisions
Check for player input
If no asteroids left

Set up asteroids
Loop

In the next tutorial, we will have to go through addressing modes,
that is, the way you can use addresses. This is really important since
everything is dependant on what information is where, so a thorough
knowledge of how to handle addresses is important. That’s all for now. Happy
coding!

perihelion of poSTmortem, 2002- 04- 05

“With your ability, if you learn to be fluid; to adapt. You’ll always
be unbeatable.”

- Fist of Legend

Last edited 2002- 06- 14

