
The Atari ST M68000 tutorial part 2 – of the workings of Devpac 3 and the
realisation of some code

Hello again. It’s only been some days since the last tutorial, but I’m bored right
now and I don’t have any computer game I feel like playing. This weekend
went great, as it was GothCon (game convention here in Göteborg, Sweden)
which meant games were afoot. I met Aldebaran for the first time IRL and he
demonstrated the game Illuminati, which I plan to play later on this evening.
But you don’t really want to listen to that, do you?

In the last tutorial, we went through some basic theory behind
programming, and now we are going to put that theory into practice. We want
to do something so awfully cool as to change the background colour to
something else. First, we need to gather and learn how to use the tools. The
tools in this case are only one; Devpac 3.00 by HiSoft. It can be acquired from
Pompey Pirates CD #114, other places, or perhaps you can even buy it :)

Once we start up Devpac, we want to change some settings to make
our lives easier. Go into options – control, under the setting format, select ST
RAM, depending on your memory size, you may also wish to change the
memory buffer. The only two interesting settings here are ST RAM and Atari
Executable. If you choose Atari Executable, you will get a .prg file every time
you assemble (also known as compile) your source code, so in order to test
your source code, you will have to quit Devpac, and run the .prg file, then start
Devpac again; enormously clumsy. Instead, we put the .prg file directly into
the ST RAM (memory, RAM stands for Random Access Memory), from where it
can be executed directly. So for now, set the setting to ST RAM. It’s only when
you are done coding something, that you will want to change this setting to
Atari Executable in order to get a normal .prg file. Go into options – options,
and uncheck the “Check absolutes for missing #”. This eliminates lots of error
reports than usually aren’t error reports. In the options – environment you can
set the environment variables, if you run from diskette, they should probably
be something like PATH=a:\bin, INCDIR=a:\incdir. Go into options – resident
and make sure both Assembler and Debugger are checked, this will also save
you lots of time if you have the memory (since I run on 4 megs, I don’t have to
worry). That’s about it I think, you can play around with settings on your own
if you like, but these are essentials in my opinion.

OK, we have our environment (Devpac) correctly configured, now
we want to do something. Remembering the past lesson, we soon realize that
to change the background colour, we will have to know what controls the
background colour. With this tutorial should be a file called MEMORY.TXT, it’s
a listing of the ST’s memory, great for reference, in it we find the following
lines:

$FF8240|word |Video palette register 0
…
$FF825E|word |Video palette register 15

As you may know, the ST is capable of displaying 16 colours at
once, with a palette of 512 colours. Having a palette means that you don’t
have to stay with 16 fixed colours, by changing the palette you can, say have
16 hues of red, and then 16 hues of blue on the next screen. Imagine an artist

that can only have 16 colours on each of his paintings, however, he doesn’t
have to stick with the same 16 colours each time. OK, it seems that the first
colour starts at $ff8240, this is indeed colour 0 and it’s the background
colour, so by merely changing the value here, we should change the
background colour.

I talked about palettes just now, the ST is built on what you call
RGB, Red Blue Green, colour. Every colour is made up of 8 levels of Red, Green
and Blue, because the computer always counts form 0, the range is between 0
– 7. 8 * 8 * 8 = 512. So, the colour $700 would mean as red as you can get
(maximum value of Red, zero value of Green and Blue). $770 would be yellow,
$777 would be white and $000 would be black. Equipped with this knowledge
we enter this single line as our source code

move.w #$700,$ffff8240 red background color

Move is the command used for moving values around other values,
in this case, we move the value #$700 into memory position $ffff8240. The #
indicates that what comes after is an absolute value, and the $ means that the
value is hexadecimal, instead of decimal (more on this later, accept for now).
The .w after the move instruction means that the move instruction should
move a word, indicating the size of the thing you want moved (more on this
later also, accept for now). So, the line above means in clear (?) English; move a
value of word size, an absolute value expressed as a hexadecimal value 700
into the memory address $ffff8240. This should be enough to change the
background colour to red.

Now we want to assemble the source code, and get our executable.
Short command for this in Devpac is alt + a. Now, a window will pop up,
displaying some statistics, what we want to search for is especially the line “0
errors found”. If there are errors found, the pointer will automatically move to
the error so that you can correct it. By pressing alt + number, you can cycle
through the available windows. So, if you do get an error, but you don’t
understand it, press for example alt + 2, which will take you to the second
window, where the error report probably is, try to understand something, then
hit alt + 1 to go back and edit your source code. ctrl + w will close a window.
Okidok, the source code has compiled successfully, now we need to run it; hit
alt + x (eXecute). Now you will be asked to pass parameters to the program,
don’t, just hit enter. Ohh, the expectation, will the background change to red?

NO! We get two fucking bombs for all our effort. What the fuck? Is
there anything wrong with the source code, no, it seems not. Is there anything
wrong with the address? Double- checking the address value, no, $ffff8240
means colour 0, which is the background colour. Well, the ST can operate in
two modes, user and super mode. In the user mode, we aren’t allowed to
access certain things in memory, for example the palette, the result if we try
to do this is two bombs. So we need to go into super mode. Referring to a list
of the so called trap functions of GEMDOS, ideally the ST Internals, we find
out how to enter super mode, the code looks like this:

clr.l - (a7) clear stack
move.w #32,- (a7) prepare for super mode
trap #1 call gemdos

addq.l #6,a7 clear up stack
move.l d0,old_stack backup old stack

pointer

 (ok, so the code looks somewhat different than in ST Internals, a
good lesson for you that you can write differently, but still achieve the same)

Perhaps I shouldn’t go to deeply into this, it will come in the next
tutorial where I’ll take up the different registers and talk about traps and so
on. For now, you’ll just have to accept it, but for you curious types, here’s a
short one. The GEMDOS have several special functions, which are accessed by
the trap #1 command (calling trap #13 calls BIOS functions). The controlling
value is put on the stack, which is address register a7 (you can also type sp,
short for stack pointer, instead of a7). The move.l d0, old_stack is for backing
up the old user stack, that gets replaced when we go into super mode.

This code obviously goes at the top of our source code, the first
thing we want is to go into super mode, then we put red colour in palette
register 0, lastly, we want to go back into user mode and also add another two
lines of accept now, understand later code, which will make a clean exit of the
program. The total code looks like this:

clr.l - (a7) clear stack
move.w #32,- (a7) prepare for super mode
trap #1 call gemdos
addq.l #6,a7 clear up stack
move.l d0,old_stack backup old stack

pointer

move.w #$700,$ffff8240 red background color

move.l old_stack,- (a7) restore old stack pointer
move.w #32,- (a7) back to user mode
trap #1 call gemdos
addq.l #6,a7 clear stack

clr.l - (a7) clean exit
trap #1 call gemdos

old_stack dc.l 0

Running this program will successfully change the background
colour to red, and then make a nice and clean exit, restoring the Atari to user
mode once again. Problem is, we now have a red background. Not to good you
might think. This can be easily remedied however, we have made a program
that changes background colour, let’s use it! Change the value #$700 to #$777
and run the program again. The background colour will now be white as snow,
like we’re used to.

In the next tutorial, I plan to cover hexadecimal, binary and
decimal numbers, program flow and talk some about traps and registers.

perihelion of poSTmortem, 2002- 04- 02

“No immovable roots, no stirring of dust, only the tao; the way of
nature. This is called tai chi.”

- Tai Chi Master

Last edited 2002- 06- 14

