
The Atari ST M68000 tutorial part 1 – on the theory behind programming

Hi everybody! This is perihelion of poSTmortem (aka Andreas Wahlin) writing. Me
and Aldebaran (aka Lars Lindblad) have just started this little project of ours; the
demo group poSTmortem. As a first step towards actually doing something with
the ST, we thought that writing a tutorial might be good. In this way, we can
teach ourselves and you (whoever is listening).

This tutorial is aimed at people who, like ourselves, want to learn to
code assembler for the Atari ST. What? You say, this is the year 2002, why on
earth would you want to learn how to code, for one thing, assembler, and
assembler for the Atari? You must be crazy. Well, you might think the Atari is
dead, but we say it survived itself, it has risen again, it is; poSTmortem (totally
lame, right?). You don’t need any programming skills, although it might help
since learning to code from assembly language is probably quite suicidal in a
pedagogical view. I’ll try to cover the basics of general programming and setting
you up in this tutorial, and in part two we will do some rather simple program to
get things started. I will however, assume that you have some basic skills in Atari
management, like file copying and so on. Also, I will assume you have a real
Atari, emulating might work fine, but nothing beats the real thing.

What is programming? Programming is the art and science of making
the computer do what you want it to do. BTW, programming is also known as
coding, I will use these two terms somewhat mixed probably. So, how do we do
that? By telling the computer what to do, and then do it. Since you don’t have shit
for brains, you will know that when you double click on a .prg file (known as .exe
files on a PC), the computer will do stuff, like running a game. So, what if we
could create our own .prg files… Yes, we can do that, this is where you’ll learn
how!

Every computer has a memory, this is where the number on your Atari
is derived from, 520 have half a Meg (short for Mega Byte) of ram, and 1040’s
have one Meg. Your usual PC these days have about 256 megs of ram, Bill Gates
once said “nobody needs more than 640 K ram (about the memory amount of an
Atari 520). If these numbers confuse you, do not worry, they aren’t important
right now. The memory is very temporary; it gets wiped out every time you turn
off your Atari, unlike diskettes (thank God). When you run a program, the
computer loads the program into memory, and then executes (follows the
instructions given by the program).

Every area of the memory has an address, so you know where you are.
You can think of these addresses as normal street addresses, but perhaps it
would be better if you thought of them more as page indexes in a book. Every
page is filled with information on how to act. So, let’s assume that we have a
monitor capable of displaying one of two colours, either black or white. The
memory address $20 holds this colour. 1 means black, 0 white. If memory looks
like this, we get a black screen.

Address Value
…

$19 12
$20 1
$21 67
…
(each address can hold a number between 0 and 255)

To understand a bit better about memory, because this is very
important, we expand our little example. There is an area in the memory reserved
for the user. This area is just for information storage, and does not affect the
hardware. Let’s say that the monitor is capable of displaying text as well, the text
is also either black or white as previously stated, and the information on the text
colour is to be found at $21. Further, the address $22 holds a pointer to the text
to be displayed. Pointer? Argh! Well, it’s really quite easy, a pointer is a reference
to another part of the memory. Show first, talk later.

Memory Value
…
$19 12
$20 1
$21 0
$22 101
…
$101 Hello World!
$200 DOH!
…

In this example, the “user memory” begins after position $100. All
address positions $0 - $100 does something with the hardware in some way, but
after that, it’s just storage space. With the above values, and given our premise,
the text “Hello World!”, will be displayed in white text on black background. Let’s
say we were to change the values to this instead.

Memory Value
…
$19 12
$20 1
$21 1
$22 200
…
$101 Hello World!
$200 DOH!
…
(changed values at $21 and $22)

We would get the text “DOH!” written in black text on black
background, not to clever. Therefore, a pointer is a reference to another place.

Because $22 only can hold a number of 0 - 255, the text “Hello World!” would
never fit, so instead we point to an area in the user memory, which can hold
much more than just a number between 0 - 255. Are you beginning to grasp how
computers work?

If you have an enquiring mind, and I hope you do, you’ll probably
wonder why the addresses $0 - $100 only hold numbers, while it seems that
addresses $101 - … can hold letters. The answer is, they actually can’t hold any
letters. In addition, it doesn’t quite look like I’ve shown you either. This might get
somewhat complicated, hold your hat and don’t cry if you don’t get it. Just read
it, let it go, meditate a bit and you’ll reach enlightenment.

The addresses $101 and $200 actually only hold numbers, but the
computer have a decode key so that each number can be decoded to a letter.
Let’s say that

! = 0
A = 1
B = 2
C = 3
D = 4
…
and so on, then it really looks like this

Memory Value Meaning
$200 3 D
$201 14 O
$202 7 H
$203 0 !
…

So you see, there are just numbers, also, as I said, each address can
only hold a number between 0 - 255, meaning that each letter is held in one
address. But but but but, why doesn’t more stuff get displayed as text? Why does
it stop at $203? The memory must continue after that surely. Let’s look at this
memory setup.

Memory Value Meaning
$200 4 D
$201 15 O
$202 8 H
$203 0 !
$204 15 O
$205 4 D
…

The text on the screen would display as “DOH!OD” and probably
much more (the rest of the memory in fact). Well, here we use a control number,

let’s say that the computer knows that when in reaches the number 255 the text
ends there. If memory looks like this

Memory Value Meaning
…
$19 12 something
$20 1 background colour
$21 0 text colour
$22 200 pointer to text on screen
…
$200 4 D
$201 15 O
$202 8 H
$203 0 !
$204 255 end of text
$205 4 D

the text “DOH!” would be displayed in white on black background.
When the computer reaches $204, it sees the number 255, which means stop
displaying text, so the letter (or rather, value) at $205 and following addresses
will not be displayed. Like I said, this may be a bit advanced, don’t panic. We will
get much more concrete in tutorial 2. I just want you to have a theoretical basis
so you know what’s what and so you can refer back to this. Just let this sink into
your unconscious, when the time is right and you have correct understanding, it
will surface and you will get it.

Now, for last theory lesson; how do you actually make something
happen? As we know, there are .prg files that make stuff happen. With our above
knowledge, we know that they affect memory. We can write down simple
commands in a text file, and then have that text file translated into the .prg
format, so that the computer will understand what we say. A program that can
pull this off is known as a compiler, a compiler usually comes with a text editor,
suited for programming needs. The text file you use to create a .prg file, is knows
as the source code. Let’s take another example, this time let’s assume we
wrote this source code.

Put #1 at $20
Put #0 at $21
Put #200 at $22
Put #4 at $200
Put #15 at $201
Put #8 at $202
Put #0 at $203
Put #255 at $204
Initialize monitor

Now, as you can guess, # stands for value, a numerical value in our

case, and $ stands for address. Now, if we compile this source code, that is,
translate it to a format the computer understands, we will get a .prg file. When
we double click on that file, the computer will do what it says above; the different
values will be loaded into the different addresses, creating the memory profile
given above. The last line “Initialize monitor” is for engaging the monitor. When
the monitor is engaged, the Atari knows that it should look at $20, $21 and $22
to gather the data needed. So instead of “Initialize monitor”, perhaps we could’ve
written

Activate $20
Activate $21
Activate $22

Because what we really want to do is to make the information on
these addresses happen; we want the computer to process the information given.
This is long and clumsy however, and the line “Initialize monitor”, or whatever
you might call it, is far simpler.

The computer, internally, understands nothing but 1’s and 0’s, all text
and numbers I have given above is for human understanding (more on binary
understanding later). Also, none of the commands or memory addresses have any
significance for the Atari, they are examples only.

OK, theory lesson over. Hope I haven’t scared you away. In the next
tutorial we will get into how to actually make a .prg file. It won’t do much, but at
least you will get to see your code in action.

perihelion of poSTmortem, 2002- 03- 31

“Conan, what is best in life?”
“To crush your enemies, see them driven before you, and to hear the

lamentations of their women.”
- Conan the Barbarian

Last edited 2002- 04- 07

