
Re: 8301
Postby Nasta » Thu Aug 02, 2018 5:39 pm

The function of the 8301 is to be the main address decoder and the video 
interface.

While the decoding is fairly simple, it's the video interface that makes things 
quite 'rigid' in the hardware sense, and some of that rigidity is transferred to
software.

Here is an example:

The 8301 uses a 15MHz internal clock to run it's memory controller logic, and 
runs the CPU at half that. The reason it is done this way is that the CPU 
internally runs 'double rate', things happen on both edges of it's clock, so one
could say that the CPU internally works at 15MHz, so to 'track' what it is doing
at any given time in order to know how to split cycles between video and CPU 
accessing the memory. If one was doing a replacement using programmable logic, 
it's not really difficult to run this clock at a rate that is inside rather wide
limits - original QL logic is after all old, and in today's terms, slow.

However, the 8301 also divides the internal clock by 1.5 to get a 10MHz clock, 
which is used to generate video (it is used directly as the dot clock for mode 
4). We all know that the QL produces a slightly wider than normal picture (the 
term is 'overscan'), and this is the reason - while deriving the required video 
timing (which is actually very rigidly specified) is quite simple from a 10MHz 
clock, 512 pixels in a line at the same rate will produce overscan and will not 
be compatible with all TVs and monitors, regarding the visibility of the full 
picture width.

If the internal clock was 16MHz, the dot clock would be 10.67MHz which is 
exactly enough to produce a fully visible picture in mode 4, although the logic 
needed to derive video timing would me slightly more complex.

But, this would also run the CPU at 8MHz (meaning various things like drivers 
for the network and microdrives would have to be 'adjusted' to work) and the RAM
would also run proportionally faster, with some complication in deriving the 
basic timing logic. A deeper analysis shows that the timing and clock were 
derived based on 250ns access DRAM which was at the time prevalent and being 
slowly pushed out by faster 200 ans 180ns DRAM, which means prices were falling 
and likely to be cheap when the QL hits the market - and knowing SInclair, this 
was an important point, more so than overscan, considering that a full 512 
pixels was intended for the 'professional' user that would use a dedicated 
monitor rather than a TV.

So, you could say that the design is 'too optimized' in some ways.

An interesting aside is that the 'as simple as possible logic' is one more clue 
amongst several that 8301 and 8302 probably started life as a single custom chip
design, to the point that the 8302 bus is connected originally to the local DRAM
bus of the 8301, which was separated once the HAL chip was introduced on newer 
board revisions. I can go into more detail with that at some other time. My 
guess (not entirely uneducated) is that Sinclair decided to use already proven 
smaller ULA chips rather than a newer and larger one, due to huge problems Acorn
had at the time with bringing it's Electron computer to market due to problems 
with it's large single ULA, that took several tries (and huge amounts of cash) 
to get right. It should also be noted that the Electron used then brand new 64k 
x 4 DRAM chips to reduce price, which would significantly reduce the size and 
complexity of the QL motherboard, reducing the 16 DRAM chips to only 4 - but 
with 64k x 1 DRAM already being used in the Spectrum and the +128 possibly in 
the works, it was a different economy of scale.

We could also look at some other designs of the time. Atari ST had comparable 
resolutions (in terms of memory used, which also means in terms of bus bandwidth



needed to refresh the screen) and they managed to do it without a noticeable 
slow down of the CPU, by dividing the 4-clock access cycle of the CPU in a 2+2 
scheme with 2 cycles dedicated to the actual CPU access and the other 2 for 
video - but the ST had a full 16-bit data bus so could pull 2x the data per 
clock, compared to the QL. While the QL does have 16 DRAM chips 1-bit wide each,
in theory it could have used a 16-bit bus, but the ULA simply does not have 
enough pins for that (although that would have SIGNIFICANTLY simplified the 
internal ULA logic!), here again reducing to 8 bits eventually reduces cost - 
the ULA costs the same per given density, no matter how much of it's internal 
logic makes up useful circuits.

The reason I mention this is because an 8301 replacement would be heavily 
dependent on the existing RAM layout (unless it supplied it's own RAM, given 
that a replacement would have to be a board rather than a real chip), in which 
case one has to either do more or less the same the original did, or be very 
clever regarding the usage of existing RAM considering a 'lowest common 
denominator' timing mode as one can never be sure what kind of RAM will be found
on a particular motherboard.

A little bit of perhaps not so commonly known history is in order here:
When Miracle systems announced the Masterpiece graphics card, it's basic spec 
was the same QL modes, but doubled resolution in both directions. Unfortunately,
at the same time Miracle became a single person, the late Stuart Honeyball. At 
the time I was thinking about new graphics and Stuart, being pressed with non-QL
projects, effectively dumped his work on Masterpiece in my lap, saying there is 
no reason to be competition. This was a VERY generous thing on his behalf, which
I shall certainly never forget. In any case, later on, Stuart decided to 
resurrect the Masterpiece as a low-cost alternative to the Aurora for users that
would decide to keep their QL's in the original box. This actually plugged into 
the 8301 socket (with flying lead to bus pin A19) and used the existing two 
banks of 64k to produce ONLY 640x480 resolution, VGA compatible. I am not sure 
but I think it would also do 512x256 and mode 8 in half the horizontal 
resolution as usual, centered inside a 640x480 field, for compatibility - and 
this required a lot of trickery to get the required bandwidth out of the old 
slow RAM. Unfortunately, it never happened, for the same reason GoldFire never 
happened - since Stuart had kindly given me one of his licences for AMD CPLD 
software, we were both based on those CPLD chips, and AMD decided to sell it's 
programmable logic business to Lattice, who promptly shut down most of AMDs 
advanced CPLDs, exactly the ones we would have used. Stuart got wind of this 
beforehand and found out Cypress was making improved clones, but alas when 
Lattice killed off the AMD versions, Cypress did the same for theirs - and a lot
of work simply went down the drain.

Another interesting tidbit in this story is that the internal video data path of
the 8301 is indeed 16-bit. One has only to look at the pixel data organization 
in memory. MODE 4 is the basic template, with one 16-bit word having one color 
component in the low byte and the other in the high byte of the word. In order 
to output a new group of 8 mode 4 or 4 mode 8 pixels to the screen, the ULA has 
to buffer 16 bits of data, i.e. 2 bytes. In actual fact it goes one step further
and buffers 4 bytes at a time (more on this later). This complicates the logic, 
and... one might say, the way pixels are drawn as well. While MODE 4 drawing 
makes sense once one looks at the workings of the MOVEP assembler instruction, 
MODE 8 is decidedly more complex and thus slower. MODE 4 bit organization lends 
itself to simpler drawing of characters, which start as a 1-bit bitmap in ROM or
RAM, but left/right PAN and mode 8 get to be complex and slow, perhaps one 
reason why there are not so many games on the QL! It is a pity the QL does not 
have a 'chunky' pixel organization (all bits of one pixel are next to each other
in a byte/word/long word). While that does require about 1.5k of tables to help 
conversion of 1-bit images like characters, to 2 or 8/16 colors, and perhaps the
reason it was not done is the ROM was already over-full, it would have made 
things easier for upgrades. The way the 8301 gets the required bandwidth from 
memory to display the screen, using an 8-bit data bus, however would have to 
stay the same even with that way of organizing bits to pixels. It would, 
however, simplify logic for a possible replacement with faster RAM :/



I will leave the exact way the 8301 generated the screen for the next post, and 
only say here that CPU access to RAM is heavily interlocked with the screen 
timing. This logic is simplified as far as it could have been given the 
underlying bus size and RAM speed, which also makes it not as optimal as it 
could have been.

What remains to be said here are a few things regarding the reliability of the 
chip itself.

There are two serious risks to it's health:

1) The video signals (RGB and synch) are directly connected to the monitor, 
which makes them susceptible to problems caused by the monitor connection 
- from static discharges to short circuits. The monochrome and composite 
outputs are much better in this respect as they are in a way additionally 
buffered and not directly connected to the ULA. Video signals are also 
available on the bus and susceptible to the same problems as others, like 
pins being bent and shorted. The signals themselves also have to travel 
the complete length of the motherboard which does not do good to signal 
quality - not a huge problem is used as TTL signals which means they will 
be re-shaped in the monitor, but not so good if used as analog signals. In
particular using them as the latter without series resistors will severely
overload the video signal pins of the ULA.

2) Heat - the main problem here being the requirement to drive the address 
lines of 16 RAM chips connected in parallel. Replacing that RAM with 64x4 
parts reduces current consumption of the QL by half or more - also reduces
the current required from the 8301 to drive the RAM signals by a factor of
4, lo and behold it remains very lukewarm under those conditions. Further,
using a GC or SGC reduces the average number of accesses to the RAM 
drastically, further reducing power consumption and heat - in a GC/SGC 
system, the motherboard RAM is only accessed for writing, and only for the
screen area (usually only screen 0), which means bank 1 os never accessed 
and also the top 32k of bank 0 unless Minerva is used in 2-screen mode.

Re: 8301
Postby Nasta » Fri Aug 03, 2018 2:34 am

Here is a bit more about how the 8301 works.
Beware, there will be some numbers to understand, as well as a lot about timing 
based on various clock cycles.

I will start with the more complicated bit, which is how the 8301 actually 
manages to read the screen RAM and use the data to create the image on the 
screen.

A bit about CRT screen basics is needed here - and the plus side is, much of the
way these used to work is still the underlying logic for more modern flat panel 
displays.

QL users already know that the MODE 4 resolution is 512 x 256 pixels - so, 512 
pixels per each of the 256 lines. However, a CRT monitor does not actually have 
'pixels' in the usual sense, but rather each line has a part you can display an 
image within, and a part that is not seen, and falls 'outside of the screen'. 
This will already give us a clue why some of the QL's picture get's clipped on 
the sides - the part the QL uses to display pixels is actually slightly wider 
than standard and extends outside the screen, into the 'invisible area'. 

The CRT displays a picture using a 'raster' of lines, basically it draws the 
display using a focused 'dot' of electrons hitting the phosphors on the screen. 
Depending on the current (which is basically the amount of electrons hitting the
screen) the point will be more or less bright. The dot is made to move from the 



top lefthand corner in horizontal lines, till it reaches the right end of the 
screen, then it returns quickly back to the lefthand side but a bit lower, so 
the next line it describes gets to be under the previous line. It repeats that 
until it reaches the bottom of the screen, then returns back to the top lefthand
corner.

While it is doing that, the actual video signal modulates the electron dot and 
thus produces a picture.
In order for the monitor to know when to return from the right side of the 
screen to the left, there is a horizontal synch signal pulse that starts the 
'retrace' back to the left side. Similar there is a vertical synch signal pulse 
that tells the monitor when the last line has been drawn and the dot should 
return to the top of the screen. In actuality, horizontal and vertical movement 
are independent so it's up to the device driving the monitor to properly 
generate the synch signals to get a stable picture.

One thing to know is that actual timing back then was based on a standard TV 
specification, and it is quite rigid. To top it off, it takes time for the dot 
to react to the synch signals and also to return to the left side, and during 
that time the dot travels backwards at a higher speed, so the video signal 
should be turned off (black level) or it would also write an image backwards and
with less precision and resolution as the dot is now traveling faster and not 
necessarily as precisely as in the 'usable' L to R direction. As the definition 
of one display line is basically the time from one to the next synch pulse, this
is why there is a portion of the line that can be used to display video within, 
while the other, non-usable part is called the retrace period.

The same exact logic applies to the vertical direction, but now the period 
between the synch pulses is expressed in lines. Similar to how each line is 
composed from a visible and invisible part, so is the entire frame of lines 
composed of visible and invisible lines, where the invisible lines now form the 
vertical retrace period.

For PAL TV, on which the QL video is based, each line takes 64us and there are 
312 lines per frame, so the entire frame takes about 20ms to draw, resulting in 
a frame frequency of 50Hz.

Quick aside: Real PAL TV uses two consecutive frames with 312.5 lines each (.5 
meaning the vertical synch pulse happens at about half the 313th line of the 
even frame and at the end of the 312th line of the odd frame) to get a total of 
625 lines of vertical resolution by drawing first the even and then odd lines, 
at an effective 25Hz rate, the contents of the picture rarely being wildly 
different between the even and odd frame so the interlacing reduces flicker. 
However, the QL simply uses the non-interlaced version which reduces the 
vertical resolution to 312 lines but with twice the refresh rate, which is more 
suitable to a computer display where contents of lines can be completely 
independent, so flicker would be quite annoying at 25Hz even at twice the 
vertical resolution.

Now, remember that I said that not all of a line can be used, and neither can 
all of the lines be used to display pixels. Also, the signal that modulates the 
electron dot has a 'bandwidth', or, simply put, a maximum frequency so the 
number of pixels one can put into the allotted 64us of time is also limited. For
a color system it's about 400 or so pixels in ideal circumstances, realistically
around 320 if you used relatively high spec commercial video circuits and ICs. 
However, if you can drive the 'dot' directly, then it comes down only to the 
circuits in the actual monitor, and the sharpness of the dot - but the basic 
timing remained (back then) based on standard TV, if you wanted to avoid going 
bankrupt.

What this means is, one line is 64us, out of which 48us should be used for the 
actual pixels, and there are 312 lines out of which up to 288 in theory could be
used for pixels, in other words, this defines the 'visible screen area'.



Since the QL was intended to have a 80 character text display, and (I will jump 
ahead a bit here) we know the pixels come out at a 10 MHz rate, this means that 
each pixel takes up 0.1us, so if 48us is visible, at 0.1us per pixel, that would
give us 480 pixels per line. Using a 6 pixel wide character, we would get 
exactly 80 characters per line. And, if we wanted to use all of the 288 lines 
available for display, that would give us 138240 total pixels and a 480x288 
resolution, and that comes out to 34560 bytes. And we do know that computers 
rather like things to be numbered in powers of 2, because it simplifies 
addressing of those bytes.

Let's explain this in a bit more detail.

The way various timing signals are generated by digital logic, is to use a 
master clock and then count cycles of it to get the various periods and 
frequencies. Again, knowing that 10MHz is used to drive the video system, it 
means all timings are derived from units of 0.1us. In this case it means that a 
whole diplay line (visible plus invisible part) takes 640 clocks at 10MHz, which
is why the horizontal synch is 10MHz divided by 640, which gives us 15625Hz for 
the horizontal synch frequency. This signal is then used to count lines, again 
visible and invisible ones, 312 total.

If one uses standard binary counting, starting at 0, this means that one line 
has 640 cycles numbered 0 to 639. Lines are numbered 0 to 311. In binary, 629 
requires 10 bits to encode, and the total pixels in a iline get numbered from 
0000000000b to 1001111111b, the last number being 639=512+127. Once cycle 640 
happens, the counter is reset to 0, so one could detect the combination 
1010000000 to reset the line pixel counter - and in fact, this is done by only 
detecting the two 1's in the entire 10-bit counter, which makes the entire 
'reset' circuit very simple.

For the line counter, 311 requires 9 bits to code, and the numbers go from 
000000000b to 100110111. Once state 312 came up the counter would be reset, and 
312 being 100111000, the hardware can detect the 4 1s in there using a 4-input 
and gate to reset the counter, so still not too bad for reset logic.

However, getting the address of the data to read from screen RAM to display at 
the right time, and this goes from address 0 to 34559, from the state of the 
pixel and line counters, is so complex that it's easier to actually have one 16 
bit counter for the address (which is what is needed to code for numbers 0 to 
34559) and reset it when the vertical counter is reset, and let it count only 
for certain combinations of states of the horizontal and vertical counter - 
namely, only while the horizontal counter counted from 0 to 479 and the vertical
counter was counting from 0 to 287. So along with a 16-bit counter (which can be
a problem because it takes time for the carry from lower bits to ripple into the
higher bits for a simple counter implementation so it could get too slow, and a 
synchronous counter would have to be used instead which uses a LOT more logic 
for long counters), one would also need additional logic to figure out when the 
counter should advance in count and when not.

So what happens if the horizontal and vertical resolutions were some convenient 
power of 2? This is now getting awfully familiar, as using the closest values 
would be 512 horizontal and 256 vertical.

This makes the pixel count go from 0 to 511, which fits exactly 9 bits (the 
reason we used a power of 2 in the first place!) and line count from 0 to 255, 
which needs exactly 8 bits. So, the numbers go from 000000000 to 111111111 
horizontally and 00000000 to 11111111 vertically. Since we are counting starting
with visible pixels and lines, this means the initial state of the counters up 
to 511 for the horizontal and 255 vertical correspond exactly to the address of 
the pixel, so concatenating the lower 8 bits of the vertical counter with the 
lower 9 bits of the horizontal counter would directly give us a pixel address. 
Since there are 4 pixels per byte (given 2 bits per pixel), the bottom 2 bits of
such address would give you the position of the 2 bit pixel within a byte and 
the remaining 15 bits would give you a byte address, from 0 to 32767, which is 



exactly 32k. All of this is basically re-using horizontal and vertical counter 
bits and no additional logic - which is a considerable simplification of logic, 
which is what you want when designing custom logic that is supposed to be as 
cheap as possible.

The consequence is that now the horizontal resolution is increased to 512 
pixels, which uses 51.2us of the complete display line, which breaks the 48us 
standard. So, there are 32 extra pixels - the timing is adjusted so that around 
16 are added to each side of the 480 pixel visible area, and this is how TV mode
was born - have 512 pixels horizontally, and limit the usable pixels in 
software. Simplifying the logic to 9 and 8 bit addressing for the visible pixels
and lines also simplifies the logic that has to do with generating the vertical 
synch pulse and 'blanking' the display, i.e. to determine when pixels are to be 
fed to the monitor, or 'black' should be generated during the various invisible 
or unused areas of the screen - simply look at the top bit of the counter and if
it is 1, generate blank (black) pixels.

Even better - it makes it also much simpler to write software for. Figuring out 
the byte address for a 480 pixel wide display, requires 'take x coordinate and 
add to y coordinate times 120', so 'real multiplication' while calculating with 
a 512 pixel width means simply shifting and splicing bytes.

There are also other ways this simplifies the actual logic that reads the data 
from RAM as well as generates the required timing for the RAM when the CPU reads
or writes it, but more on this in the next post.

Re: 8301
Postby Nasta » Fri Aug 03, 2018 9:04 pm

Now before I go into the details of what 8301 actually does on a signal and 
nanosecond basis, an explanation is needed on the setup of the actual hardware.

As we know, the CPU is, contextually, the 'master' of the system, and does it's 
work by accessing various parts of memory and input/output devices, using three 
buses:

1) The address bus, which transmits the address, or in a way, WHERE to find 
or put data.

2) The data bus, which carries data back and forth, from CPU to other 
devices, or from devices to the CPU.

3) The control bus, which is a collective name for a set of signals that time
the transactions and control when the addresses and data are valid, as 
well as what direction the data is to travel.

However, since the QL also has a video system to let it's user see a graphical 
representation of what is going on, the CPU is not the only thing that needs to 
access memory.

As I explained, the way the picture is generated on the screen is a repetitive 
process, because the screen only retains the image for a short time 
(milliseconds) before it fades again, so it needs to be continually refreshed. I
also mentioned that the entire picture is a special 32k area of memory which 
contents are interpreted as pixels on the screen. Since the contents are dynamic
under program control, this is obviously RAM.
So, this area needs to be read out over and over again, 50 times a second - and 
more importantly, this MUST be done at certain intervals and speed, no stopping,
no waiting.

We also know that memory is in general 'single port' which means that only one 
request can be served at a time, so at any given time, it's either going to be 
accessed by the CPU or read for screen generation purposes - and, since the 



latter must be exactly timed, should the CPU want access at the same time, it 
will have to wait.

In order to somewhat mitigate the problem, the QL design splits the bus between 
RAM and everything else. There is a 'switch' between the CPU bus and the RAM 
bus, which makes it possible for RAM data to travel on it's own bus to the 8301 
when it reads it to refresh the screen, while the CPU can concurrently access 
everything else, like the ROM, or anything on the expansion bus. However, should
the CPU want to access RAM, the 8301 has priority and the CPU has to wait.

* Small aside: depending on the version of the motherboard, the companion 8302 
(and the IPC that communicates through it) can be on the RAM bus side or the CPU
bus side. For instance, on ISS5 boards the 8302 is on the RAM side which means 
accessing the IO registers within it was subject to the same wait while the 8301
is accessing RAM. This changed on the latter boards with the HAL chip.

For people somewhat knowledgeable of the QL motherboard, the bus 'switch' is 
made out of 3 LSTTL chips, 74LS245 (for the data bus) and 2x 74LS257 (for the 
address bus). The address bus is also multiplexed by the 74LS257 on the way to 
the RAM, which is the normal way DRAM - which is the kind used in the QL - is 
addressed.

So, now we get to the nitty-gritty of how the 8301 does it's work.
Somewhere at the beginning I also mentioned that the 8301 is the main system 
address decoder. So, amongst other things it enables or disables the 'bridge' 
depending on what address the CPU wants to access. Of course, it has to monitor 
where the CPU is within the course of the access as well as where the screen 
access is in its own timing, and synchronize the two. Aside from that, the 8301 
lets the CPU access ROM and add-ons at full speed, and asynchronously - 
basically it lets the CPU 'time itself' when it does that, counting on knowing 
that the speed of the ROM is enough to execute even the fastest transfer the 
68008 is capable of at a 7.5MHz clock.

However, if RAM is accessed, since the screen refresh gets priority, this is the
part that actually determines how fast accessing the RAM happens.

* again - a small aside. DRAM comes in certain chip sizes and organizations, and
while we also know the 8301 can support two screen areas, 64k total, it actually
controls two 64k DRAM banks and actually treats themas a single block of RAM so 
screen access will slow down the CPU not only when it is accessing the screen 
area, but any address within the 128k of on-board DRAM. This is an obvious cost-
cutting measure as it's not as easy to set up the 68008 to control DRAM, compard
to, say, a Z80 in the Spectrum. Spectrum knowledgeable people will know that the
ULA, which also controls screen refresh, had shared access only to the first 16k
of RAM, while the added 32 (to make 48 total) was not slowed down. 

Unfortunately, in order to save more TLL chips and logic, the 8301 controls the 
entire RAM, even though it can only use half of it to store two screen areas.

So, finally we get to the 'nasty' stuff.

I mentioned in the paragraphs above that the entire timing of the screen refresh
is based on the specification of a standard TV raster line. We already know that
the QL displays 512 visible pixels in each line out of 640 total, and that each 
line, having 512 pixels made out of 2 bits each (to get 4 colors), therefore is 
made out of 128 bytes. It takes 51.2us to display the pixels, so this means 
that, effectively, 128 bytes have to be read out of RAM to be translated into 
these 512 pixels, which means the memory bandwidth required is 128/0.0000512 
bytes per second, or 2.5Mbytes per second. Just for a sanity check, let's see 
how fast the CPU can access memory - it takes a minimum of 4 clock cycles at 
7.5MHz, so the maximum bandwidth is roughly 7.5/4 Mbytes per second, or 
1.875Mbytes per second. In other words - the screen refresh process requires 
MORE bandwidth than the CPU! But then, let us see how fast the actual DRAM can 
work, and this roughly comes out to... drumroll: 2.5Mbytes per second.



So.... what now? It seems that there is not enough bandwidth to fit both screen 
refresh and CPU access!

Well... remember that the screen refresh 'only' happens for 51.2us out of 64us, 
so that means that in theory the RAM is used for screen refresh 4/5 of the time 
and the CPU can access it 1/5 of the time. While this would work, it would be 
downright crippling to the CPU and slow it down by a factor of 5 if it was 
executing code or fetching or storing data in RAM. We know that 8301 slows the 
RAM down a LOT but it's not this bad.

So, in one of the rare bouts of being clever, the 8301 uses the fact that screen
refresh reads RAM from consecutive addresses, to speed up (well... somewhat) RAM
access.

And here is how it does it:

Since we know that the pixels are shifted out from the 8301 at a rate of 10MHz, 
and it's clock is 15MHz, this means that it's using some convenient common 
denominator of the two clock to base it's timing on. And, indeed it does - it 
divides every display line into chunks that last 16 pixels in lenght, which 
takes 16 cycles at 10MHz and 24 cycles at 15MHz. The 10MHz clock is actually 
generated from the 15MHz clock by taking 3 half-cycles at 15MHz and using it as 
a full cycle at 10MHz, so as the 15MHz clock goes 010101 etc, the 10MHz clock 
goes 001001 etc, this pattern then keeps repeating.

Within the 24 cycles of the 15MHz clock, 16 cycles are used to read 4 
consecutive bytes from screen RAM and 8 cycles are kept open for the CPU to 
access the RAM. Please note that 8 cycles at 15MHz is exactly 4 cycles at 7.5MHz
and this is the 'natural' shortest access the CPU can generate if it's left to 
drive the bus at the maximum speed. That being said, using 8 cycles at 15MHz as 
the clock to drive the generation of the signals to the DRAM is the natural way 
to do it with a 68008 (and in general up to 68030) because the CPU itself 
generates it's control signals at twice the clock rate - it divides every 4 
clock access into 8 half-cycles.

* More detail in here:
The 8301 generates a 'page mode' DRAM access to read 4 consecutive bytes much 
faster than if they were read as random bytes. Out of the 16 cycles at 15MHz it 
has to do this, it uses 3 to set up the access and then repeats the same 3-cycle
sequence 4 times (12 cycles total) to read the 4 bytes, and then one more cycle 
to finish the access. So, it needs 16 cycles to get 4 bytes.

During the 8 cycles it can use for the CPU, it uses 3 cycles to set up the 
access, 3 to perform it and 2 to finish it - so it takes 8 cycles for 1 (yes - 
ONE) byte.

In other words, the bandwidth the RAM is capable of for consecutive data is 
twice as much as for random byte accesses.

Since the 4 bytes it reads consecutively will make up 16 pixels, they need to be
buffered internally to the 8301, because they get read during 16 cycles of the 
15MHz clock and get 'stretched' to 24 cycles at 15MHz (which is exactly 16 
cycles at 10MHz). It is not exactly easy to figure out how the buffering is done
but one could make an educated guess given that we need to save on logic. There 
are probably 2 2-byte (1 word) buffers, and the first 8 pixels ot of the total 
16 read start at cycle 12 of each 24 cycle timing chunk.

* Aside: the 16-pixel timing chunk can sometimes be seen when the digital RGB 
signal from the 8301 is used to drive an analog input on a monitor or TV, when 
the screen displays white, one can see the screen seems to have 32 vertical bars
that are slightly darker, at every 16 pixel interval, often they flicker 
slightly depending on what the computer is doing because it modulates the power 
supply, and this voltage is being directly output by the 8301 as logic 1 on the 
RGB lines.



Now, I laid out that the 8301 uses chunks of 24 cycles, out of which 8 are 
dedicated to the CPU. In case you missed it, let me rephrase it a bit: the CPU 
gets only 1/3 of the total time to access the RAM. And, in case you were 
wondering, yes it does slow it down to about 1/3 of it's maximum speed when it 
does. However, we know that when one measures the speed of the CPU having it 
execute code from RAM, it comes out as working at about half speed. So where's 
the difference?

Well, I did mention that only 512 out of the total 640 pixels in a line are 
visible, i.e. 51.2us are used out of 64. The entire line therefore consists of 
40 total 16-pixel chunks, but 32 are used for the actual displayed pixels, 
during which the 8301 does it's 1/3rd bandwidth thing, while in the remaining 8 
chunks it lets the CPU run full speed. If we look at it in CPU accesses, at 4 
clock cycles at 7.5MHz, one display line can fit a maximum of 120 accesses, 
divided into 40 groups of 3. In the first 32 groups only one out of 3 is 
available to the CPU, in the last 8 groups all are available. This means a total
of 56 out of the theoretical 120 accesses are usable by the CPU, which gives us 
an effective CPU speed of around 46.44% maximum, or a factor of 2.143 slowdown. 

In reality this of course depends on the actual instructions executed s some 
have 'internal' clock cycles while the CPU does not use the bus, and can 
partially overlap with the 8301 reading the screen data.

But wait, you might say, did I not say that also not all display lines are used 
for actual visible pixels? Yes I did, and you would be right - 256 are used out 
of 312. So, along with 80% of any line being used for visible pixels, roughly 
82% of all lines are used for visible pixels, so it would logically follow that 
along with 20% of each line time being accessible to the CPU full speed, the 
same full speed could be had for 18% of all display lines. Alas - the cleverness
of the 8301, such as it is, does not stretch that far. Sadly, it still does the 
same even during the invisible lines, just does no actual reading of data.

* Aside: let's explore for a minute what the effective speed of the CPU would be
when running from 8301 controlled RAM, if it actually only used the actually 
required lines to read screen data:

We already calculated that during the 256 lines of the visible display it lets 
the CPU have 56 out of the theoretical 120 access slots. During the remaining 56
lines it could theoretically give the CPU all of the 120 theoretical slots. On a
full screen basis, we therefore have 120x312=37440 slots, and the math for the 
actual implementation of the 8301 makes 56x312=17472 slots available. If the 
unused lines were not used for fake 8301 accesses, this number would be 
56x256+120x56=19880. This would mean the CPU would work at 53.1% maximum speed, 
rather than ~46.5%. It does not look like a significant improvement looking at 
it like that, but if one compares the two, the larger number is almost a 14% 
improvement compared to the actual situation. Given that in it's time people 
complained about this, a 14% improvement would not be unwelcome - compare that 
to the mere 6.66% improvement if the clock was upped to the maximum 8MHz the CPU
would support.

So, why was this not done? The partial reason comes down to the need of the DRAM
to be refreshed periodically to guarantee the integrity of the data stored in 
it. But more on that, as well as other quirks of the 8301 in the final post.

Re: 8301
Postby Nasta » Sun Aug 05, 2018 3:14 am

Well, perhaps I will stretch the final part to several posts as it will be 
easier to comment the pictures.

So, for starters, here is a logic analyzer trace of the 8301 managing a write to
RAM, the CPU having tried to access the RAM before/while the 8301 was reading 



screen data:

The green part is the 8301 accessing screen RAM, and the grayish part is the 
actual CPU access to RAM.

I will explain some of the signals in detail, in order to follow how the actual 
logic I described makes the relevant signals behave in real life.

The top 8 traces are signals generated by the 8301 that control the RAM and the 
'bridge' (buffer and multiplexer) circuits that separate the CPU bus from the 
RAM bus.

The bottom 8 traces are signals the CPU generates or looks at in order to signal
the various devices on the bus what it's about to do, as well as signals the 
devices must generate in order to signal the CPU how they are reacting. Unlike 
the top 8 signals, 6 out of the 8 bottom signals are generated by the CPU and 2 
are generated by the 8301 - these being the clock signal (7M5, standing for 
'7.5MHz'), and the /DTACK signal which tells the CPU when the device has 
finished with the current CPUs access so the CPU can proceed with he next 
access.

Here is a short explanation of the signals by name. First the CPU signals:
7M5 is the CPU 7.5MHz clock, the ULA 15MHz clock divided by 2. Since this is the
only clock on the screen, both states/edges are marked by colored bars since 
every 15MHz clock cycle generates one edge on the 7.5M clock signal. Both the 
8301 and the CPU effectively use both 7.5MHz edges.

A6, A15, A16, A17 are some of the CPU address signals which are relevant for 
decoding parts of the address map of the QL.



/DS is the CPU data strobe, when it goes low, it signals the 8301 that the CPU 
is starting an access. It also signals that the state of the address bus and 
data bus on write are stable.

/WR is the CPU read/write signal, shortened here to /WR as it goes low when the 
CPU wants to write data, i.e. output data on the data bus.

/DTACK is produced by a device the CPU is accessing when it has done doing what 
the CPU wanted from it :), at this point the device pulls this line low. The CPU
detects this and finishes the current cycle and continues with the next one. In 
other words, this signal can be used to extend the access when needed. Since the
8301 is the decoder for all internal devices on the QL motherboard, it is 
responsible to generate this signal.

And here are some relevant 8301 signals.

/CSYNCH is the composite synch signal. It was added to the complement of signals
so the logic analyzer can trigger a signal trace on it. The underlying reason is
that /CSYNCH goes low when the currently displayed line of pixels ends, so 
triggering on it can tell the analyzer to start tracing signals at the beginning
of a line.

VDA is generated by the 8301 and is high when the 8301 accesses display data. 
Actually, it is used to disable the address multiplexers on the motherboard 
(74LS257) to switch off the address coming from the CPU and replace it with an 
address it generates to access the required display data. It actually also 
multiplexes it's own internal counters that contain the address but it's done 
internally so the 8301 only has pins for a multiplexed address. When VDA is low,
the CPU is free to access the RAM (*) if it wants to.

/TXOE is similar to VDA but works for the data bus. When high, it disables the 
data bus buffer (74LS245) which then disconnects the RAM data bus from the CPU 
data bus, in order that the 8301 can read it without it conflicting with data 
the CPU might be writing or reading to parts of the address map that are not 
RAM. There is a difference, in that the signal only goes low (and enables the 
data buffer) when there is actual data to be transferred, as not all cycles in a
CPU access cycle are being used by the CPU to access data, some need to be used 
to set up control signals.

A subset of the ULA signals are specific to the way the dynamic RAM works, so 
let me explain them as a separete group. These are /RAS, /CAS (two of them), /WE
and indirectly ROW

* A bit on DRAM operation: for various reasons, one of which is the reduction of
pins on the chip, the address bus of the DRAM is multiplexed, and it gets 
communicated to the DRAM chip in two 'halves' usually half the number of bits of
the total address. The QL uses 64k DRAM chips, and 64k requires 16 bits of an 
address. The actual DRAM uses 8 address lines and the 16 bits are input 8 bits 
at a time, in the context of a row and column address of a 256x256 matrix.

Internally, the DRAM actually accesses a whole row of data once the row address 
is input, and then the column address selects a part of data (1 bit in the case 
of the QL) that is to be output to the CPU or replaced by the CPU data. After 
that, the whole column actually gets written back, which is also how the data is
refreshed. This is a crucially important property of dynamic RAM - data is 
actually stored in a matrix of capacitors, and left alone, they discharge slowly
so data will be lost if it is not refreshed periodically. Also, in order to fit 
the maximum bits to the minimum area, the capacitors are so tiny that reading 
their state also destroys the data, which is why it then has to be written back 
from the row buffer.

So, on to the actual signals:

/WE is obvious, and when low it tells the RAM it's to write the data it is given



on the data bus. There are slight differences in the way particular DRAM chips 
treat it and the 8301 is being quite conservative in the way it generates it so 
many types could be used - obviously to make it easy to use almost any ol 
cr*p :)

/RAS goes low to latch the row address into the DRAM chip. It takes the states 
of the 8 address lines and 'remembers' them internally for the duration of the 
access.

/CAS goes low to tell the DRAM that the column address is present on the address
bus

/ROW is used to drive the external multiplexer when the CPU accesses the DRAM, 
it selects the address lines from the CPU to present to the DRAM as row (when 0)
or column (when 1) - this is the select input to the 74LS257 multiplexers. Note 
it is wrongly labeled as high active (without the / in front).

The way the DRAM works can be observed in the grayish area on the picture. The 
timing diagram goes left to right (shows how the signals change as time 
advances). The gray area is the part of the 'timing chunk' the 8301 uses to let 
the CPU access the RAM.

In state 0, the VDA signal goes low, for the CPU to access the RAM. The /DS 
signal is already low, telling us the CPU has already requested an access of RAM
well before it got to actually be performed. In fact, if you look carefully, the
CPU signals show that /DS is low and /WR is low right from the start, even 
before the part where the 8301 reads RAM happens, meaning the CPU has started 
the cycle well before the events we are observing in the diagram. So, it has 
already been made to wait at least 8 clock cycles. This means that all the 
address and data lines in the buses have long been stable.

* Aside: if the 8301 sees the CPU is trying to access the RAM from the state of 
the address lines, but /DS has not become low by 4 full clock cycles before the 
screen access starts, it will not let the CPU perform a RAM access even if it 
was 'it's turn' because it would not be able to finish it by the time the 8301 
needs to read screen data. So it follows that the CPU can end up taking 16 clock
cycles to perform a single byte access - 4x slower than maximum speed. 

'Fortunately' the waits due to screen data access are so long that it has enough
time to use the upcoming time slots when they come, as it usually starts a cycle
sometime close to the start of the next 8301 access (see right-hand side of 
diagram, the green part after the gray one).

What we see next is that ROW stays low for a while after VDA goes low. The 
74LS257 multiplexers have already selected the row address bits (a bit more 
about this later on) but they are put on the multiplexed address pins of the 
DRAM only whan VDA goes low. Before that, it was the address from the 8301 that 
was there. Next, /RAS goes low in cycle 2, and latches the row address into the 
RAM chips - all of them. A short time after that (and not clock related) /ROW 
goes high to replace the row address with the column address. The delay is part 
of the logic but is welcome as some DRAM chips require the row address to remain
stable for a while after /RAS goes low (this is called a 'hold time'). Again, 
there is a delay before one of the /CAS signals goes low in state 3, because 
time is required for the actual signals to switch over and stabilize (this is 
called a 'setup time'), and then /CAS goes low.

As can be seen, there are two /CAS signals, /CAS0 and /CAS1. These are connected
to the chips making up the lower and upper 64k of RAM respectively. In this case
/CAS0 goes low, meaning the CPU accesses the low 64k - and this can actually be 
seen from the available address lines in the trace. /CAS needs to stay low for a
while for the RAMs access time to pass and the data to get written into it.

* Note: there us a larger delay from the clock signal to /CAS going low than 
from the clock signal to /RAS going low. This is most likely because there is a 



clock generated internal /CAS signal that then gets split into /CAS0 and /CAS1 
using combinatorial logic, which results in a small additional delay.

We can also see that the /TXOE signal has gone low in order to let the data on 
the CPU data bus on the RAM data bus, and /WE has gone low to tell the RAM it's 
supposed to write it. /WE is a sort of gated and buffered CPU /WR signal. The 
8301 has rather strong outputs for the address bits. /RAS, /CAS, /WE as they 
need to feed the signal to at least 8 or the full 16 RAM chips. Supplying the 
required current is one of the reasons for the 8301 generating heat.

Finally, if we go down to the CPU signals, we cee the 8301 has also now 
generated the /DTACK signal in order to tell the CPU that it has gained access 
to the RAM and the data has been written.

The somewhat curious thing to remember here is that /DTACK actually goes low 
ahead of the actual data write in the strict sense but also, the data has long 
been written when the CPU figures out it's time to get on with the next access. 
This is down to two things:

First, the RAM actually latches data when /CAS goes low if it finds /WE low at 
that time. So, for this to work, data has to be present and stable on the RAM 
data pins before /CAS goes low, as well as the /WE signal - and as one can see, 
the /TXOE signal has indeed enabled the data buffer so the CPU data can go to 
the RAM, and /WE is indeed already low when/CAS goes low. This means that the 
CPU could just as well continue on it's merry way just a bit after /CAS has gone
low (remember, a short hold time is required), but:

Second, the 68008 bus protocol is such that the CPU starts looking for the 
/DTACK being low at a certain point (well passed in this case) but once it 
detects it, it will take one and a half more clocks to finish the current cycle.

So, while the 8301 could have been implemented to optimize writes, the logic 
used has been simplified so that it works the same for both reads and writes, 
where there are certain subtle differences. The take away point is, the 8301 is 
based on the 68008 bus protocol and expects a certain reaction of the CPU as it 
gives it various signals in response to an access attempt, SYNCHRONOUSLY with 
the 7.5MHz clock it generates. In other words, the 8301 logic expects the 68008 
to work off the 7.5MHz clock as supplied by the 8301, so it can work in lock-
step with the CPU.

The access as observed in the CPU portion of the trace (gray) is the simplest 
mode of access of DRAM. When data is read, the only difference is that /WE is 
not low, and the 74LS245 buffer has it's direction changed, expecting data to go
from RAM to CPU. However, this time the data must be present and stable on the 
CPU bus, as provided by the RAM. This happens sometime after /CAS has gone low 
and is defined as the /CAS access time, worst case this will be about 1 clock 
cycle at 7.5MHz. However, we are back to the way the 68008 protocol works, and 
8301 expecting to work in lock-step with the CPU, clock by clock - knowing that 
the CPU takes time to recognize the /DTACK signal, it is set low by the 8301 
before the actual data is ready, because the protocol is such that when /DTACK 
is recognized as low, the actual data is taken by the CPU one clock cycle later.
The 8301 logic anticipates this. This is why the CPU cannot be run from an 
asynchronous clock at a frequency that is much different than the actual 7.5MHz,
if it is much higher, the 8301 anticipates it has one clock cycle at 7.5MHz of 
time to provide valid data to the CPU, but the CPU will expect it one clock 
cycle later but at a higher clock - i.e. after a shorter period than the 8301 is
counting on. So, what happens is that the data is usually being written 
correctly (due to the RAM internally 'storing' data to be written when /CAS goes
low, before the actual internal write happens - so it's like a buffer of sorts),
but reading will be incorrect.

Now, let's look at the green portion of the diagram. The reason why I decided to
explain that one after the CPU part is that the address multiplexing and 
switching from row to column is hidden inside the 8301 so it's not easy to 



follow without knowing how it happens outside, which is seen when the CPU does 
it, as discrete logic chips are used to implement the multiplexing and data 
buffer.

However, what we can see immediately is that during the green part, VDA is high 
so the address from the CPU is disabled (and replaced by the address from the 
8301) directly on the multiplexed signal level, and /TXOE is high, meaning the 
data buffer is disabled, preventing the data being read from the RAM by the 8301
from 'leaking' to the CPU bus.

Also, /WE is kept high, meaning that data is read - and indeed the 8301 only 
ever reads data to generate the display.

At the beginning things look familiar, first /RAS goes low in state 2, then a 
while later, in state 4 comparable with how it happens when the CPU is accessing
RAM, /CAS goes low - and in this case it is also /CAS0. In fact, it will always 
be /CAS0 as the 8301 can fetch screen data only from the bottom 64k of RAM. In 
all probability in state 3 the row address is replaced by the column address 
using an internal multiplexer to get the relevant row and column counter bits to
the multiplexed address bus pins.

But then something interesting happens, in state 6 /CAS goes high again and then
the 3-half-clock period sequence repeats 3 more times, while /RAS stays low.

What is not seen in the diagram is that the two lowest address bits in the 
column address also change and count from the initial 00 binary in state 3, up 
through 01b, 10b and finally 11b. at the same time CAS goes back high.

This is a faster mode of access for addresses that are all within the same row 
in the RAM - as I said, internally a whole row is read and then when the column 
select address is given, only one out of the 256 bits maiking up the whole row 
is chosen out of the 256 making the whole row. In this case, the 8301 signals to
the RAM it needs to keep the same row address without reading it anew, and read 
4 consecutive bytes from the already read row buffer 'in one go' taking about 2x
the time needed to read a single byte when the CPU does it. This can be done 
much faster as the row does not need to be re-read every time. Since the 8301 
does not access RAM almost randomly like a CPU does (because you never know what
program is running and what order of access it requires at a given moment), but 
does it strictly in sequence, from the first to the last pixel, it's easy to 
implement this sort of 'shortcut' to get more speed. One could argue that things
would be better if more consecutive bytes could be read and buffered this way, 
but the problem is exactly the buffer required - remember, 8 bytes are read in 8
cycles, but their contents are spread out as pixels coming out sequentially 
during 12 cycles of the 7.5M clock. So, this was the best that could be done 
with the least amount of buffer size.

* I have not been able to time the pixels versus accesses exactly but I am 
reasonably confident that the 16 pixel block to be generated by the data being 
read begins sometime in cycle 9, with the just read second byte of data being 
written directly to a shift register from where it will be shifted 2 bits at a 
time. The next 2 bytes are stored in an intermediate buffer in state 16 and get 
transferred to the shift register in state 5 of the CPU access slot.

Re: 8301
Postby Nasta » Mon Aug 06, 2018 2:00 pm

In the previous long post, a signal trace was shown of some CPU and 8301 
signals, and this trace shows one of the 40 timing chunks the 8301 generates for
each line of display it sends to the screen. In actual fact, it shows one of the
32 'active' chunks during which the 8301 is reading data from RAM that will be 
output as visible pixels.
The next picture shows a trace of one of the equivalent timing chunks that 
happens when the 8301 is generating completely blank lines, in our case lines 
256 to 311 out of the (0 to 311) that make the whole screen. And, it's actually 



a very interesting one as will be shown soon.

Just for a minute, let us loom at the first picture, namely at the state of the 
address lines shown on the trace.

There are only 4, because this is basically enough to figure out what part of 
the motherboard hardware is being addressed.

* Note, the traces were taken on a 'bare' QL.

So, the 8301 disregards A18 and A19 from the CPU which means it reduces the 
address map to 256k and this is then repeated 4 times within the 1M total.
The decoding table is actually very simple:

A17:A16=00 and /WR=1 decodes the ROM. ROMOEH goes high and /DTACK is a copy 
of /DS which makes the CPU perform the fastest possible access in ROM.

A17:A16=00 and /WR=0 just generates /DTACK as a copy of /DS which makes the CPU 
perform a write cycle that effectively does nothing.

A17:A16=01 accesses the IO area. There are some differences between ULA versions
it seems. There are only a few addresses used but the OS will use $18000 as the 
base address so, for this one also A15=1. It also uses A6 (and on some ULA 
versions A5) to select control registers within 8302 (A6=0), or 8301 (A6=1 or 
A6:A5=11).

When the 8302 is selected, the pin /PCENL on the 8301 also goes low, this is the
chip select output that drives the equally named input pin on the 8301.

A17=1 accesses the RAM, and when A17=1 and A16=0, /CAS0 will be activated, when 



A16=1, /CAS1 will be activated, i.e. A16 selects the RAM bank.

If we look at the previous trace, we can see that the CPU is addressing the 
first 32k of the RAM (A17:A15=100), i.e. screen 0.

In the picture above, we see something curious - it is addressing the IO area 
with A6=0, which are the registers inside the 8302, and the /WR signal being low
tells us that it is writing data.

Also, we can see CSYNCH is high and an even more curious thing within the 
portion of the access chunk that is normally used to read screen data - there 
only /RAS goes low, but there is no /CAS signal and in fact if we look into 
the /RAM datasheet, this means no data is transferred at all (which is OK since 
there is nothing to display, these lines are all black) and the RAM is actually 
being refreshed. So, the CPU is writing a value into the 8302 on an idle QL 
during vertical retrace - what it is actually doing is serving the frame 
interrupt - which occurs every time a vertical retrace begins, and it is 
generated from the VSYNCH signal.

The trace however immediately poses two questions:

1) Why is the 8301 using 8 clock cycles just to refresh the RAM when it could
use just 4, freeing twice the usual time for CPU access? And, further 
(though not shown in the diagram) why does it do it for every one of the 
32 chunks that would normally be used for visible pixels in a line?

2) What does the 8302 have to do with this, as the 8301 is obviously letting 
data on the RAM data bus (/TXOE=0) even though the RAM is not using it?

Well, let us start with the easy one first - and that's question (2).
If I could have squeezed the signal /PCEN (or PCENL as it is written on the QL 
schematic) into the trace, it would be shown going low at the same time /TXOE 
goes low, and going back high a bit before /TXOE goes high. In other words, the 
8302 is being selected.

Well, the explanation is that the 8302 was connected to the RAM data bus on all 
issues of the QL motherboard up to 5 (or in any case up to whichever one has the
HAL chip on it). The 8301 represents one more small load on the bus along with 
16 already existing loads on it. On the CPU side, there are two ROMs and the 
data buffer chip on the data bus so connectiong the 8302 there would really have
made no problem at all. However, it appears that the logic inside the 8301 
counts on the 8302 being connected to it's side of the data bus, and the only 
logical explanation is that these two started as a single design, with a single 
internal data bus - and the logic was just split without correcting it for the 
new situation.

And yes - this implies that accessing the 8302 in this case does incur the same 
slowdown as accessing RAM.

In later versions the 8302 data bus was connected directly to the CPU data bus, 
but the internal decoding logic of the 8301 had to be circumvented by a piece of
decoding logic inside the HAL chip.

Now, question (1) has an easy and a more complex answer.

The easy part is that the logic was made the simplest possible, though... I 
think Albert Einstein is credited with a saying that goes like this: things 
should be as simple as possible but not simpler than that. And this may be an 
example of 'simple than that', but without knowing how complicated the logic 
inside of the 8301 is, it is difficult to say for sure. If it was a CPLD or FPGA
it would have needed very little added logic to free 8 out of 12 total cycles 
during vertical retrace, so the access to RAM would have been twice as fast. In 
the grand scheme of things, the difference is not massive, but a small 
calculation will reveal it is still just a bit more than what one would get by 



upping the CPU clock to the full 8MHz.

The more complex part has to do with refreshing of the RAM. As I mentioned 
before, QL uses DRAM and it requires refresh. The requirement is that all 256 
rows should be refreshed (by one of several methods on offer) or at least 
guaranteed to be read, every 2ms. In other words, the complete set of row 
addresses must be cycled through tat least once every 2ms. Rather than perform 
explicit refresh, the 8301 relies on the sequential reading of the RAM when it's
doing screen data reads, to go through all of the row addresses often enough. In
the previous long post I have shown that there are a total of 56 unused lines, 
and since all 312 take roughly 20ms (19.96 to be exact), 56 take just about 
3.5ms is longer than 2ms, so reading or explicit refresh must not stop during 
the invisible lines or the RAM will lose data.

Re: 8301
Postby Nasta » Mon Aug 06, 2018 6:59 pm

You can keep CAS quiet but RAS should probably be cycled at some minimal 
frequency because it is used for the internal charge pump that biases the 
substrate, I am not sure these old RAMs can work without that. The power 
consumption would surely be much lower but since it's NMOS there is a rather 
high quiescent current draw. Also, the address multiplexer would have to be 
enabled which means they would at least have to constantly drive the address 
bus.
To be honest, if something like a 8301 replacement was designed, it would 
probably be a VERY good idea to include it on a re-designed (and at least 
partially form factor) compatible motherboard.

Re: 8301
Postby Nasta » Mon Aug 06, 2018 10:35 pm

They are not needed but still on nearly all motherboards RAM is soldered on-
board so not easy to remove. If they could be removed, sure, there would be no 
point in even putting any sort of signal on those pins. But since the RAM is 
there, as I said, I am not sure they like working powered up with no RAS 
cycling, yet signals present (again, no choice here as RAM is soldered on board 
and signals we would otherwise need are also connected to them). Of course I 
could be wrong, but the only thing it does say about this in the datasheet is 
that before the RAM will work as specified a few 'dummy' RAS cycles have to be 
performed.

To be honest, if something like a 8301 replacement was designed, it would 
probably be a VERY good idea to include it on a re-designed (and at least 
partially form factor) compatible motherboard.

From a technical standpoint that is certainly true, from a retro-computer view 
I‘m not sure this is the case. The point there is to alter the hardware as 
little as possible, I think.
I‘d like a minimal replacement that doesn‘t do more than the original ZX8301 
except outputting the screen as VGA 1024x512 with pixel doubling and line 
trippling, for example. Technically inferior but a cool way to keep the old 
machines working.

You certainly have a point there. Also, for sure displaying the standard screen 
as a VESA compatible version would be foremost on the implementation list, and 
in fact that could be done even by adding line buffers to a clone of the 
existing logic - even with overscan correction. Lesser improvements: Optimized 
RAM access to get that few % of speed improvement, possibly two more screen 
areas (using /CAS1 - dead easy really) and perhaps a sort of packed pixel mode 
16 (no extra video pins needed. 



Re: 8301
Postby Nasta » Wed Aug 08, 2018 1:19 am

I remember tracing this (not sure... Samsung motherboard?) when I was designing 
Aurora. On it the 8301 is directly on the bus. Also, there is a GAL replacement 
of the HAL with equations, which also suggest the same thing. There is really no
reason for it to be on the RAM side, nor for using the 8301 /PCEN decode, since 
the HAL does it all over again (and uses, or I guess CAN use the 8301 PCENL pin 
as well).

BTW there are other quirks to do with how PCENL is decoded - it is generated 
inside the 8301 using DSMCL (which is actually DSL from the CPU) and also uses 
DSL on the 8302. I remember being quite puzzled by this and tried just pulling 
DSL on the 8302 low, and guess what, it worked just fine (though I cannot 
guarantee it will work on every motherboard and every 8301 version, though). So 
in essence there is a redundant pin on the 8302... and, for that matter on the 
8301 (though it's not obvious).

BTW 8302 bus logic is completely asynchronous and it can work with a much faster
68008 bus, no problem.

In any case, if the 8301 DSMCL signal is used to decode 8302, then it MUST be on
the RAM side of the bus because 8301 enables the bus buffer via /TXOE when PCENL
goes low. On write it would not make a difference, but if the 8302 was on the 
CPU side, on read the 8301 would enable the buffer expecting data to go from the
RAM side bus (expecting 8302 to supply data there) to the CPU bus.

It's a little bit odd, given that they could have put almost any logic into the 
HAL given the few input and output signals and their simple relationship to 
clean up the design, but failed to do it on the first revision that had the HAL.

Re: 8301
Postby Nasta » Wed Aug 08, 2018 1:42 am

But then if you look at what people have been doing with Spectrum clones, it 
comes down to what path you want to take. For instance, if a FPGA replacement 
was made I would not be against, say, implementing faster RAM access, modern 
monitor compatibility and perhaps some minor improvements which could be argued 
to have been easily possible when the QL was originally made.

My gripe with the motherboard would be components that are problematic to 
replace or remove when they fail (in this case it would be RAM), and signal 
integrity. After all I just re-used the 8302 and IPC on the Aurora :P

Re: 8301
Postby Nasta » Wed Aug 08, 2018 11:01 am

The thing with the 8301 is that it is not that fragile itself, but other 
components and situations not really under it's control WILL kill it. For 
instance, RAM problems such as shorted address and control pins or dead chips 
that internally short pins will kill the RAM address/control pins. They are 
quite robust but also the highest current thing on that chip (RGB and the synch 
signals may be of the same size, not absolutely sure though) - abuse them long 
enough and the chip will die a heat death.

And then there is the classic static discharge to any of the monitor signals.
I did consider a replacement motherboard, actually made a wire wrapped one a 
long time ago using a 68008FN.

The idea would be of course to fit it into the original case, with the usual 
connectors in their familiar places, with some minimal exceptions (like original
'mirrored BT' joystick and serial ports... really??? I hated those with 
passion), or external MDV connector.



BUT - absolutely it would have some improvements, like proper buffering on the 
monitor lines, and joystick ports. Old chips that can be safely replaced would 
be - use a 67008FN and good socket for the ROM(s) or EPROM, and even a flash 
chip on board. Optimize the 8301 using 128k SRAM (which in today's context costs
~nothing) for shadowing and one single RAM chip (yes there is a nice one that 
fits just right, and it can actually be used to implement the entire 128k). This
would also make it possible to implement a 'turbo mode' with 68008 running 
completely asynchronously clocked from the 8301 and with potentially a higher 
clock rate.

Make it low power, i.e. HCMOS logic where needed, and include a switching 
regulator that can run the whole thing off of 9V only, with power for serial 
port(s) being generated on board.

Place things so that the keyboard membrane fits as usual. If I could get Lau to 
release the Hermes code to the public domain, even using a PLCC 8749 chip for 
the IPC would be interesting.
The reason behind this would be that the board can be made VERY small, though 
somewhat odd shaped, but it makes it possible to retract the expansion connector
quite a bit further inside so some expansions would fit inside entirely and keep
it all neat.

The one thing I would make optional are microdrives, though.
Dave did design a MDV replacement board that makes it much more reliable WRT 
signal integrity but the only way to use this is to unsolder and then re-solder 
two critical components, the ULA and the R/W head, and neither is an operation 
guaranteed to work.



Re: 8301
Postby Nasta » Thu Aug 09, 2018 10:39 pm

OK, let me slowly wrap this up...

Here is a schematic symbol of the 8301 with correct pin-out:

So, here is formal description of the pin functions:

RAM signals:

DB0..DB7 - input - RAM (and in most cases 8302) data bus, connects to the CPU 
data bus using a 74LS245 bus buffer.

DA0..DA7 - input/output* - multiplexed RAM data bus, the CPU address bus connect
to these via a pair of 74LS257 multiplexers, more below.

/RAS - output - RAM /RAS signal (row address select), latches the row address 
into the RAM roughly on it's falling edge.

/CAS0 - output - RAM /CAS signal for the low 64k of RAM (RAM bank 0), latches 
the column address into the RAM

/CAS1 - output - RAM /CAS signal for the high 64k of RAM (RAM bank 1), latches 
the column address into the RAM

/WE - output - RAM /WE, write enable signal (latches the write dada if low when 
either /CAS goes low). Remains high to read data.



CPU-RAM bridge control:

VDA - output - Video Display Address, when high it disables the multiplexed CPU 
address provided from the pair of 74LS257, and makes it possible for DA0..DA7 to
drive the RAM address bus.

/ROW - output - Selects the row (low) or (column) part of the CPU address bus 
using the pair of 74LS257 multiplexers.

/TXOE - enables the bus buffer between the RAM and CPU data bus, so the CPU can 
pass data to and from the RAM and 8301.

Monitor signals:

R, G, B - output - pixel color components (digital), encodes one out of 8 
colors.

/CSYNCH - output - composite synch (active low). This generates a low pulse once
every display line (horizontal synch), but also encodes vertical synch by 
changing polarity when VSYNCH (below) is active. Horizontal synch pulses can be 
separated out of /CSYNCH by feeding /CSYNCH and VSYNCH into an EXOR gate. 

VSYNCH - output - Vertical synch (active high) outputs a high pulse for a few 
display lines to re-trace the CRT to the top of the screen and start a new 
frame. It also generates an interrupt to the CPU.

CPU/System interface signals:

A16..A17 - input - CPU address lines A16, A17 which decode the basic 4 blocks of
64k containing the ROM, IO, RAM bank 0, RAM bank 1.

/DSMC - input - essentially the master chip select of the 8301 (and thus the QL 
motherboard), connected to the CPU /DS signal (which goes low when the CPU 
provides or expects data, and thus signals that an access is in progress). The 
QL does not use /AS, and assumes that the address bus is stable whenever /DS is 
low (which it is). More below.

/WR (RDWL) - input - Signals the direction of data transfer, low = write (CPU 
provides data), high = read (CPU expects data).

/DTACK - output - Data Transfer ACKnowledge, goes low when the 8301 signals that
the operation requested by the CPU has been completed. It also uses it to extend
the cycle while it's reading RAM to generate the display. As mentioned before, 
the 8301 expects the CPU to use the clock the 8301 supplies it so that it can 
work in lockstep with the CPU, to anticipate what the CPU will do, so it 
actually supplies the signal before the data is ready when RAM is being read. 
When the ROM is being read (or write cycles are generated to it's addresses), it
goes low with /DSMC.
CLK (CPUCLK) - output - 7.5MHz clock generated by dividing the 15MHz 8301 clock 
by 2. It is expected to drive the CPU clock input.

/PCEN - output - goes low when the 8302 is to be selected, the basic condition 
is A17=0, A16=1, A6=0, /DSMCL=0. This may be an open drain signal since it is 
pulled up by a 2.2k resistor, however I have not checked this. The decoding 
mechanism in the 8301 expects the 8302 data bus to be connected to the RAM data 
bus so /PCEN is also only low when VDA is low. 

ROMOE - output - goes high when the ROM is to be selected, the basic condition 
is A17=0, A16=0, /WR=1, /DSMCL=0.

Clock signals:

XTAL1 - input - crystal oscillator amplifier input (non-TTL), connects to XTAL2 



through a 15MHz crystal and 1M resistor, also to ground via 22pF cap.
XTAL2 - output - crystal oscillator amplifier output (non-TTL), see above. It is
possible to get a 15MHz clock by connecting a HCMOS buffer input to this pin and
buffering the signal.

Still, there are a few things left unexplained, so let me explain :)

1) How are the RAM address lines multiplexed?
We can get this from the wiring of the 74LS257 multiplexers. So here's how it's 
done:

RAM DA0 = A2 (Row), A0 (Column)
RAM DA1 = A3 (Row), A1 (Column)
RAM DA2 = A4 (Row), A5 (Column)
RAM DA3 = A7 (Row), A6 (Column)
RAM DA4 = A8 (Row), A12 (Column)
RAM DA5 = A9 (Row), A13 (Column)
RAM DA6 = A10 (Row), A14 (Column)
RAM DA7 = A11 (Row), A15 (Column)

Just for reference, the RAM data bus (and the 8301 data bus) DB0..DB7 maps 
directly to the CPU data bus D0..D7.

It may be a bit odd that the address lines are somewhat 'mixed up', considering 
the RAM is organized in rows and then the bit is selected out of a row, one 
could expect to see the CPU high address lines in the row address and low 
address lines for the column address. However, this 'strangely' mixed up 
organization does make some sense.

First, one has to note that RAM address and data lines can be premutated. What 
this means is that you can connect any address line of the CPU to any address 
line of a RAM in any order, and the same for data lines - the labeling does not 
have to be strictly followed - A76543210 xan be passed as eg. A03257614 to the 
RAM. Any permutation will actually work because although this changes the actual
address inside the RAM the data is stored, it is always a one-to-one mapping, 
and the data is always read from the place it is written as long as the address 
is the same. The same is true for data lines - the data bits may be scrambled on
write, but they are de-scrambled right back on read. It works as long as only 
one thing writes and reads data, such as the CPU. If there is another device 
reading from the RAM and expecting a certain layout of the data, the permutation
has to be equally applied, so the 'scrambling' of data bits and addresses is the
same.

One might as why this would be useful, and one obvious answer is to simplify PCB
routing - note that even just on the 8301 the data and address pins do not go 
strictly in sequence. However, it is sometimes useful when it is known that data
may be regularly read is sequence, as it is in the case of refreshing the 
display.

I have mentioned the need of the DRAM (which is what the RAM type in the QL is) 
to be periodically refreshed. This is actually done by reading, either 
explicitly (data is used for something) or implicitly (only the /RAS signal goes
low internally reading data but it is never output to the pins, instead only 
written back when /RAS goes high again). The latter is called a '/RAS only 
refresh', not very creatively but to the point :) .

* Aside: it is of course the write-back that does the actual refresh of the DRAM
data, and it happens regardless of what kind of access is performed, including 
of course write, which does write new data to some part of a previously read row
(depending on the column address) but for all other parts existing data is 
written back. When read, the data just read is written back. On the QL this is 
not relevant but in some applications data can also be sequentially written, and
this can also be used as a refresh mechanism.



The refresh requirement is that all 256 rows must be accessed at least once 
within 2ms (Newer RAMs are much better and even 16ms figures are fairly common, 
but the capacity is higher so there are more rows to refresh ecen if the time 
limit has been improved). Since the 8301 reads data sequentially, it uses the 
fact that the address it reads increments sequentially and tries to map 
appropriate display RAM address bits to row address bits to satisfy the refresh 
timing.

It has to keep A0 and A1 as a column address as cycling these through the 4 
possible combinations of 00..11 addresses 4 consecutive bytes (one long word) 
and this is used to change the column address inside the same RAM access cycle 
to exploit faster access times and get 4 sequential bytes out of the RAM in time
it would normally take for 2 random bytes.

The 8301 also outputs the entire screen worth of data (32k) in 16.384ms, which 
means it goes through 8k long words within that period of time. Remember, we 
must look at long words as this is what the 8301 actually reads (as 4 
consecutive bytes) so out of the 15 total bits (A0..A14, which is what we need 
to describe one out of 32k addresses), the bottom 2 must be used as a column 
address, therefore we are left with the top 13 bits, which effectively address 
long words within the screen RAM. If we look at how often the address bits 
change state when we count up from 0 to 32768 (or 32k), we can start with the 
obvious - the very top one, A14 goes through both states once in the whole 
16.384ms cycle. The next one down, once in 8.192ms, the next one down in 
4.096ms, and again the next one down, bit A11, once in 2.048ms - which is JUST 
shy of the 2ms requirement but is actually enough as the spec is given under 
absolute worse conditions of temperature and operating voltage. So, this gives 
us the top address bit we can use as a row address, and all the others have to 
be of lower significance, if we want to be sure that reading the screen data 
will absolutely go through all the 256 rows at least once in, in our case, 
2.048ms.

All the higher bits, A12 up to A15(*) must be used as a column address (along 
with the already established A0 and A1), so bits A2..A11 can be freely 
distributed to the row or column address without breaking the refresh 
requirement.

* Small aside: 2.048ms rather than 2ms or slightly below might be another subtle
clue that the design may have originally been intended to run the CPU at 8MHz, 
i.e. run the logic at 16MHz. Calculations would show that this precisely meets 
the requirement to fit the visible pixels of a display line into a 48ms period, 
which is a pretty major clue. 

As we can see in the above mapping table, the row address bits map to CPU/8301 
internal address bits A11, A10, A9, A8, A7, A4, A3, A2. That being said, it's 
quite obvious that we can chose 8 out of 10 bits, so whichever combination we 
chose, any 8 bits out of 10 will cycle 4 times within the chosen 2.048ms 
interval (as the extra 2 bits have to go through 4 states without that being 
reflected in the row address, but rather in the column address). So, in fact, 
every row is refreshed 4 times - hence the refresh requirement is not only 
satisfied, but the RAM is 'over-refreshed' by a factor of 4. This could have 
been used to some advantage, but more on that later. 

2) How does the 8301 know to select the 8302 inside the IO area but only when 
A6=0, when there is no A6 pin?
Well, this is a 'tricky' one which might have cost the designers one extra pin. 

The clue is in the state of the /ROW pin when A17=0 and A16=1, i.e. the IO area 
is accessed. If we look at the first signal trace, when the 8301 reads the 
screen and the CPU writes it, we can see /ROW is used to switch over the CPU 
address multiplexers from row to column address, the determining factor being 
address line A17, which is 1 if RAM is being accessed.

However in the second trace, A17 is zero and /ROW is high, meaning the column 



address, or rather, as explained above, CPU addresses A15, A14, A13, A12, A6, 
A5, A1, A0 are present on the RAM address bus. Well, when A17 is 0, the DA0..7 
lines of the 8301 become inputs and are used as inputs to a decoder that further
decodes /PCEN to only be active when A6=0. There are some differences on what 
other lines are used depending on ULA version, so in some cases A15 and A14 are 
required to be 1 and 0 respectively for the 8302 and for that matter 8301 to be 
selected. On others, only A15 must be 1, on yet others A15 and A14 are don't 
care. There is more to be said on this subject, see below.

What is not obvious here is that this is a very strong clue the 8301 and 8302 
started life as a single design. Astute enough readers might just have realized 
that the 8302 'incidentally' uses address bits A0, A1 and A5 to do it's internal
decoding, and lo and behold exactly those bits (out of many possible 
combinations that could have been used) appear in the column address for the RAM
bus, and are passed to the 8301. If you connect the 8302 entirely onto the RAM 
data and address bus knowing about this (not using the HAL chip logic), and 
tie /DS on it low, it works just fine.

* Aside: this choice of address lines comes with a price, which is not obvious -
one extra pin, namely /ROW is needed. This is to differentiate it's function 
from /RAS, which is often used to switch over the DRAM address multiplexer, 
along with doing it's standard DRAM function - because the multiplexers are not 
infinitely fast, the row address is presented when /RAS is high and will reman a
bit after /RAS goes low, which is long enough to satisfy the row address hold 
time for the DRAM (the time the row address has to stay on the address bus 
once /RAS went low - this is actually usually zero for most DRAMs so that's easy
to satisfy). With this arrangement /ROW is needed to present the column address 
without /RAS going low. The irony is, this pin could have probably been avoided 
anyway as only /RAS going low will just refresh an address in RAM (no harm done 
except a bit of power usage) and there is more than enough time for either the 
8301 or 8302 to be accessed during /RAS being low and abiding to DRAM timing.
Alternatively, as was shown under (1) other address line mappings to row and 
column addresses could have been used. It seems, however, that the designers got
stuck on using A0, A1 to select internal 8302 registers which are part of the 
column address. Ironically the only time they are used is to read the real time 
clock seconds counter as a long word, which is REALLY not something that happens
often - it could have just as well be read as a sequence of bytes from other 
addresses. This would have made it possible to use the row address bits to 
transmit the required address bits for decoding so /RAS could remain high if it 
was also used to select the row/column address.

3) How does the 8301 decode and use it's one and only control register?
Well, the display control register (usually referred to as MCR, master chip 
control register) is a write only register that actually has only 3 bits. It is 
normally accessed at $18063 (hex address, to make it clear) but has many aliases
inside the IO area. As was already mentioned, depending on 8301 version, these 
aliases may take either the entire 64k block starting at $10000, 32k, or 16k 
starting at $18000. The aliases happen because not all address bits are used for
decoding the actual hardware register so all addresses where only the used bits 
are taken into the decoder will access the same hardware.

A lot of this has already been said above, so essentially the 8301 looks for 
/DS=0, /WR=0, (A17=0, A16=1), optionally (A15=1;A14=0), A6=1, optionally A5=1) 
and A0,A1=1. Using $18063 satisfies all of these conditions including the 
options. The register is write only and attempting to read should be considered 
to produce random data. From this it also follows that the RAM data bus pins on 
the 8301 are always inputs as it only ever gets data either from RAM (when 
generating the display) or from the CPU via the bus buffer, when MCR bits are 
being written.

Only bits 1, 3 and 7 are implemented:

Bit 7 selects the screen area, known as screen 0 (when 0) and screen 1 (when 1) 
- this actually appears as address bit A15 in the multiplexing scheme when the 



8301 is supplying the multiplexed RAM address.

Bit 3 selects the resolution. Plenty has been said about this elsewhere. Suffice
to say that if it is 1, it concatenates two successive mode 4 pixels into a 4-
bit pixel with 3 bits used for the RGB components and one as a flash toggle. The
hardware does this after RAM data has been serialized into mode 4 pixels.

Bit 1 blanks the display when 1, but, as has been shown, this does not stop the 
8301 from 'reading' the screen RAM even if it is disregarding any actual data. I
would consider this a missed opportunity, even though it would be reminiscent of
the ZX81's 'fast' mode :) - more about this in the final installment.

So... next and finally: how could it have been improved without significant 
complications, and perhaps guidelines for a re-implementation.

Re: 8301
Postby Nasta » Fri Aug 10, 2018 3:27 pm

There are some discrepancies regarding the HAL chip as some signals are unused 
on the ISS6 board, but would have to be on the Samsung board for the 8302 to be 
on the CPU bus side (like gating off /TXOE when the 8301 detects the 8302 I/O 
addresses). I did not go tracing those as it is obvious from the logic what it's
supposed to do, an it does actually work, so I guess it's also doing it :)

Re: 8301
Postby Nasta » Fri Aug 10, 2018 3:51 pm

Have also a look at the maximum period required for /RAS. It does have a maximum
(as long as it is) so it cannot be completely static. But I am sure at that rate
the current consumption would be FAR lower.

This suggests that you would implement the entire 128k inside the FPGA? 
Otherwise a part of the original RAM or some other RAM would have to be used. I 
would strongly vote for 'other RAM' as I'm guessing a FPGA with 128k block SRAM 
would be a huge overkill when it comes to the amount of logic it contains which 
would basically remain unused. Actually, you could probably implement a 68008 in
there too.

Given the FPGA would come with lots of pins and the whole replacement would have
to be a small PCB I vote for a smaller FPGA that can contain SCR0 and 1, and a 
128k SRAM on the side to implement the actual 'CPU' RAM, and shadow the video 
RAM inside the FPGA. This way DB lines could still be kept input only and 
perhaps even simplify and streamline the logic as one could buffer the write to 
the screen RAM inside the FPGA and not worry about data being read, since that's
provided from the SRAM chip.

Perhaps only through a discrete buffer and that should be disabled for VGA 
compatible timing. This way it wold still be possible to remain faithful to the 
original hardware for users who insist on the original monitor(s). Anything 
faster would I think need a separate output anyway. VSYNCH and /CSYNCH need to 
be provided at close to standard TV intervals for SGC compatibility (HSYNCH 
derived from VSYNCH and /CSYNCH is used to trigger DRAM refresh on the SGC).

Given that most output signals would either remain strapped to a constant level 
or can be 3V3, there are not that many that need fast level shifting - something
like a quickswitch also provides 3V3 clamping and could turn out to be feasible,
eg. for DA0..7 and DB0..7. Or even just series resistors and internal PCI clamps
with the help of a capacitor or several to filter stuff where it's critical, 
especially for CPU signals that did not come through a TTL multiplexer and bus 
buffer. For the latter the added capacitances of the RAM chip pins might even be
of some help.



Re: 8301
Postby Nasta » Sun Aug 12, 2018 4:20 am

So, to finish off, here is a short recap of some 'quirks' of the 8301, which 
could probably have been 'differently engineered'.

I should also put in a warning - all of this is (as 'educated' as I can make it)
largely conjecture from the available data. Perhaps more could be known by de-
capping the chip, though a better idea would be first figuring out the 
difference between the various versions (2 CLAxxxx and one ZX8301 that I know 
if).

Some ideas are based on knowledge of PLD hardware but in truth, gate arrays 
(which were the first custom logic available) have some fairly crucial 
differences. In particular, routing of signals is a point where huge differences
can accrue - migrating a single layer metal to double layer metal process can 
mean the difference between fitting a circut even possible or not, onto a same 
give 'sea of gates' type chip. However, in most cases I think the points below 
have merit.

1) The issue of overscan and 7.5 vs 8MHz CPU clock.

As was amply explained, almost the entire operation of the QL RAM to CPU 
interface is based on how the 8301 accesses screen data.
So, we know that it uses a master 15MHz clock to derive all timings, and that 
'time' in CPU sense is divided into 64us intervals, which are further divided 
into 40x 12-clock chunks. These are further divided into thirds (which are 4 
clocks long each). During each 64us interval, 32 12-clock chunks have only one 
4-clock period dedicated to CPU data access, while 8 have all 3 4-clock periods 
dedicated to CPU data access. When you crunch the numbers, you get a dot clock 
(I will be using MODE4 as reference) running at 15MHz/1.5, so 10MHz and the 32 
chunks where screen data is accessed add up to exactly 51.2us of pixels, i.e. 
512 pixels per line.

This is even continued during unused lines with the sole difference no actual 
data is being read to generate the pixels, though the actual RAM access does 
take place as a refresh cycle.

So, what would we need to do to get our 512 pixels into a 48us period, which is 
what is defined as 'standard', i.e. no overscan.

Obviously, the clock would have to run faster as more 'chunks' where pixel data 
is read need to be fitted into a shorter time. Once the math is done, you end up
with exactly 8MHz for the CPU clock, which means a 16MHz main clock and still 
a /1.5 pixel clock which comes to 10.6666MHz.

However, the line interval, 64us, needs to remain unchanged and this is a bit of
a problem. Given that the whole logic is based on a 12-clock timing chunk, and 
there are 512 clocks per one 64us line, it's rather obvious that 512 is not 
wholly divisible by 12, we get 42.66666 12-clock chunks.

So we can either extend this to 43, which slightly lengthens the 64us standard 
line period to 64.5us, which is still just in tolerance for a TV.
We can also shorten it to 42, which shortens the interval to 63us, which might 
even be more compatible because US NTSC uses a fater line rate and most TVs are 
more tolerant to faster rather than to slower rates.

Or, we can use different logic that makes it possible to have a 4-clock based 
timing for the period where no pixels are displayed during a scan line - and 
this would be the most complex change to the logic, as it has a 'special case'. 
The two former ones involve different logic to detect the number of the chunk 
where the line period should end, which is a LOT simpler. While it needs very 
slightly more complex logic for this, the most complex part, i.e. the various 
counters that generate the timing and the RAM timing state machine remain the 



same.

Along with a more compatible picture, it comes with a speed increase, which is 
slightly over that of just increasing the clock to the CPU. The reason is that 
now we have more timing chunks per 64us line, but the number of them used to 
access screen data has remained the same, so more are available for CPU access 
to RAM.

Before there were 40 chunks of 3 4-clock periods, giving us 120 total 4-clock 
slots, 56 of which could be used by the CPU. This is a 46.66% ratio.
Now we would have 42 chunks (lets take the worst case implementation) of 3 4-
clock periods, giving us 126 total 4-clock slots, 62 of which could be used by 
the CPU. This is a 49.21% ratio, but the CPU clock is also increased by 6.66% so
the total increase over the current scheme is about 12.5%.

There is however also a drawback. The CPU clock is used to derive some timing, 
notably the serial port baud rate and, certainly at least possibly and therefore
more problematic, microdrive data rate timing in the 8302, so as easy as this 
mod would have been for the 8301, it would imply a lot more problems for the 
8302 logic.

2) What about the 56 unused display lines where the display data is still being 
'fake read' and the CPU is being slowed down?

Well, this is a tougher one to crack. The question here is, do we want more CPU 
speed or perhaps, if we really need to sacrifice memory bandwidth, how about not
making the reads 'fake' but real ones, and get a higher vertical resolution?

Let's deal with the second idea first:

Given that there still need to be counter bits to count the lines all the way 
from 0 up to 311 total, no change is needed to that part of the logic. What 
would be needed is a different logic that determines when the invisible lines 
start, which is now trivial, as we have visible lines going from 0 to 255, and 
need 9 bits (0..8) to count to 311 which is past 255 that 8 bits would give us, 
we simply use bit 8 to tell us if the lines are visible or not, as well as what 
type of screen data read should be done (real or refresh).

The PAL standard defines the maximum number of visible lines as 288, but this 
only gives us 24 lines of retrace which means it's likely to be a problem on 
some TVs.

However, old QL users will remember there was an 'extended 4' QL emulator which 
indeed could do 768x288 and in fact Aurora also supports this resolution, as 
well as 512x288. What needs to be done is more complex logic than just looking 
at bit 8 of the line counter to determine what the invisible lines are and what 
the position of the vertical synch pulse needs to be to center the extra 'tall' 
display inside the monitor or TV screen, and, finally bit 8 of the line counter 
must be passed as address bit A15 to the RAM address multiplexer in the 8301, 
instead of bit 7 of the MCR register. This would have meant that 368064 bytes 
would be used for display memory, reducing the amount of free RAM by exactly 4k.
It would also require a different approach to switching between screen area 0 
and 1, as now it's not neatly fitted into a power of 2 number of bytes - if this
feature was deemed important enough to begin with as a trade-off vs having more 
vertical resolution. The obvious and possibly even more convenient solution 
would be to move screen 1 to the beginning of the top 64k of RAM, as that only 
changes the logic used to decode that /CAS1 should be used for screen data reads
by the 8301, rather than /CAS0.

On a regular 128k QL (and possibly even on a 640k, don't have the data to 
calculate the size of the slave block table for 640k RAM) it would fall into the
free RAM and could simply be reserved by job 0 using some simple tricks, and 
used for various things including games. The one game I am aware that used it 
had to completely use stand-alone code as using screen 1 meant not having any 



system variables in the usual place, and before Minerva, that meant not having 
an OS once the game is loaded. Not a huge problem, but if one wanted to use two 
screen areas WITH the OS, this alternative solution would have probably been 
better.

Other than some slightly more complex logic and 4k less of free RAM this would 
have no other serious repercussions to the bare QL as we know it - even if the 
second screen was not implemented at all as a result, and it could be said that 
the response would have been positive - it would certainly put the QL at the top
of usable graphics resolution at the time.

So, back to 'wasting' cycles during the invisible display lines.
Normally there are 56 of them, and some of what will follow has been written 
about in the previous posts.

If we go back and look at the way address bits are presented as row and column 
portions to the RAM, and given that the row address counting through all 256 
rows is important to insure proper RAM refresh, we can see the following pattern
of address bits:

Row address 7..0 = {A11, A10, A9, A8, A7, A4, A3, A2}.

Given that these are generated from the line and chunk counters that are used to
generate the display timing, and we know they go sequentially through the 32k 
screen RAM, 4 bytes at a time. Given that there are 128 bytes per line, or 32 
long words, address bits A6 down to A2 form a 5-bit counter that counts the long
word to be accessed, from 0 to 31, starting with the lefthand side of the 
screen. A6 carries over into A7 and A7 to A14 then count the visible line 
number. We have already established that we need to go through a certain number 
of addresses within ~2ms which is what determines that A11 should be the top 
address bit of the row part of the RAM address.

However, we see that the row address bits do not continue down from A11 to A4 
but rather A6 and A5 are 'skipped', or invisible. This means that when we look 
at the row address as a whole, A2..A4 count from 0 to 7 (000 to 111 binary) and 
then repeat this 4 times before A7..A11 change and count up by one, because A5 
and A6 have to go through 00 to 11 (4 states total) to carry into A7, but we do 
not see this since A5 and A6 are not part of the row address.

What happens is that a sequence of row addresses XXXXX000, XXXXX001, etc, to 
XXXXX111 where XXXXX counts up for every new display line, appears 4 times 
within each line. This means that when the RAM is not actually read, but only 
refreshed during the inactive display lines, it is actually refreshed 4 times 
over, where once would have been enough.

This could have been used to free up bandwidth for the CPU to use.
Lets take a step back.

We said there were 40 chunks total of 12 clocks each per line, 8 of which were 
completely free to be used by the CPU. If you take the above in consideration, 
the refresh pattern 'just happens to repeat' every 8 chunks. And there are 5 
total of these 8-chunk blocks in a scan line, and 1 is always free for the CPU 
to use, no screen data is read or refreshed. So, the simplest way to free more 
of them during the 56 invisible lines would have been to actually generate only 
ONE 8-chunk block with 8301 accesses. And the most logical way would be to 
simply reverse the logic for the visible lines - when a line is visible, use 4 
blocks for the 8301+CPU, 1 block for CPU only. When a line is invisible, use the
previously CPU only block for the 8301+CPU in refresh mode, and the previously 
8301+CPU blocks for the CPU only - which actually SIMPLIFIES the logic as it re-
uses the already existing logic to determine the visible vs invisible part of 
every line.

What would be the result?



Well, as we said before, each line has 120 4-clock slots, 24+32 used for the 
CPU, the rest for 8301. Multiply this by 312 lines, so we have 37440 total 
slots, 17472 used for the CPU (56 per each of 312 lines), the well known 46.66% 
utilization figure.

In the modified version, we start with the same total of 37440 total slots, 
256x56 used by the CPU during visible lines, and 56x104 used by the CPU during 
invisible lines. This is a total of 20160 slots used by the CPU, 53.85% 
utilization figure, a 15.4% improvement.

We could push this a little further by shortening the time the 8301 uses to 
access RAM in refresh mode to one 4-cycle slot rather than 2, because it is 
using the same timing as if it was accessing 4 bytes of consecutive data, when 
in fact it is not accessing data at all. One 4-cycle slot would have been enough
for refresh.

This would rise the number of slots used by the CPU from 20160 to 20608, giving 
us a 55% utilization figure and a roughly 18% speed improvement - and this would
be about the maximum one can have without seriously changing the hardware.
Things would not be that good if it had been decided to extend the vertical 
resolution to 288 lines.

Here are the figures: The simple version would get us 49.74% utilization, a mere
6.6% improvement over standard. The more complex version eeks out 1.1% more at 
7.7% improvement over standard - but mind you, with 12.5% more pixels on the 
screen (32 more rows).

* Interesting bug (quirk?) I forgot to mention before:

Astute readers will note that with the row addressing set up as outlined, the 
8301 reads or refreshes all rows every 32 display lines. What is not obvious is 
that there is actually a bug in the refresh scheme because the total number of 
lines is 312 and this is not wholly divisible by 32 - it comes out as 9.75. This
means that all rows get refreshed within 2.048ms which is just to spec, only 9 
out of 10 times. The tenth time only 3/4 of the rows get refreshed, so the other
1/4, namely the top 16k of both 64k RAM banks does not get refreshed. Doing the 
math tells us that this part of the RAM gets refreshed normally 8 times, 
followed by one refresh every 3.584ms rather than the specified ~2ms. While this
may, now that you know about it, seem alarming, in real circumstances DRAM can 
retain data FAR longer than the refresh spec - as some have noted when the QL is
quickly powered off and back on while holding the reset button - often most 
pixels of the display such as it was at power off remain preserved on power-up. 
That being said, there was a simple way this could have been avoided, and that 
is with a different mapping of screen address bits to row and column address.
If the row address was made up as:

Row address 7..0 = {A9, A8, A7, A6, A5, A4, A3, A2} all the rows would be 
refreshed every 8 lines, and since 312/8=39, there would be no partial refresh.
The above logic to get a better RAM bandwidth utilization figure would be 
different, though, the simple reversing of 8-chunk blocks could not be used, but
it would still not be that complicated.

* Aside: The presence of the 'screen blanking' bit in the 8301 MCR register is 
curious to say the least as it has to my knowledge never been used by the OS. 
The obvious use would be a 'screen saver' though it would actually only display 
a black screen rather than switch off the video signals, which is perfectly fine
given that the monitors, let alone TV sets had no notion of power saving and 
would not switch themselves into a low power (almost off) mode when there is no 
signal present for a while.

But there is a much more interesting and not obvious use, that has to do with a 
lot of what was discussed above, regarding memory bandwidth utilization.
What if the blanking bit switched off the 8301's display data reading mechanism 
since no data is needed to display a blank screen, with the consequence of 



freeing clock cycles for the CPU to access RAM during invisible (blank) display 
lines? Given that there still needs to be a refresh scheme in use, we can use 
the same idea but extend it to all lines when the blank bit is set. Under such 
circumstances we still have the aforementioned 37440 total potential CPU access 
slots, of which only 2496 would be used to refresh the RAM, giving us a 93.33% 
utilization figure for CPU-RAM bandwidth. Given a program and data in RAM, the 
QL would have been exactly 2x faster. While it's difficult to imagine a scenario
where this could be exploited to execute some program faster, one interesting 
one does come to mind. Imagine you had some QL's networked to yours but with no 
screen attached or... simply, running some software remotely? It wouldn't be 
that bad to have them run rather faster than usual in that sort of 
configuration.

3) Why not 16 colors instead of flash?

The obvious answer would be, we need an extra pin for that. This would mean a 
different connector for the monitor as well. I'm not going to say anything about
adding one more video related signal to the expansion connector J1, as IMHO 
having the original RGB there was not a very good idea to begin with (but then I
would be putting my own foot in my mouth a bit as a long time ago I actually 
used these signals to drive some highly experimental hardware to get more colors
and resolution out of the 8301... but quickly went to picking them off the 8301 
socket instead).

In fact, there are several ways a pin could have been freed for other purposes 
on the 8301.

The most direct one would have been to change the way the 8302 chip enable 
signal /PCEN is decoded inside the 8301. Choosing address lines that are in the 
column address part of the RAM address for that was a dubious choice, because it
requires a separate signal to control the address multiplexer in order to tell 
it to pass the required address bits to the DA lines of the 8301. Usually the 
/RAS signal is used to flip from the row to the column address for the RAM as 
the row address is required to be stable when /RAS is high and persist for at 
most a very short time (shorther than it takes the multiplexer to actually 
replace the row address with the column address) when /RAS goes low, after which
the column address can be put on the DA lines. As it is, a separate signal is 
needed because /RAS must stay high not to start an access cycle in RAM while the
8302 is being accessed.

However, one could argue that /RAS could still have been used as the multiplexer
select signal anyway, since there is no /CAS generated when the 8302 is accessed
so the RAM would just internally do a refresh while data was actually being read
or written from or to the 8302. While it does increase the RAM current 
consumption a bit, the 8302 is accessed so infrequently compared to anything 
else that the trade-off would have been well worth the extra pin to use for much
more clever things.

Be that as it may, let's explore the possibility of having a way of getting more
colors without having to use an extra signal or turning the RGB lines into 
analog signals - which is actually not possible inside the type of chip used to 
implement the 8301 ULA.

The clue that points the way is there when one loads a MODE 8 screen but forgets
to actually change the screen mode to MODE 8 and leaves it in MODE 4. 
Surprisingly, the picture is very much recognizable, except for flashing bits if
there even are any.

So, the trick would be to display 512 pixels in a line instead of 256 but 
interpret the 2 bits for each of the 512 pixels using different color components
for every even and odd pixel. There are numerous ways this can be implemented.

* Quick aside: such a trick was used on the original Apple II video board but on
the level of luma/chroma component signals rather than RGB signals).



I am not certain that the following is not a particular quirk of the version of 
the 8301 I have explored, but there is a slight shift in the horizontal position
of a MODE8 picture with respect to MODE4 which suggests that MODE8 is actually 
generated from mode 4 pixels internally to the 8301, rather than implementing a 
different way to shift bits of the 4-byte daya buffer into pixels, depending on 
the mode selected. The way FLASH works is also an indicator as the flash bit 
latches the rest of the bits concurrent with itself in the same MODE8 pixel, 
which ideally means it would have to be present a short while before the others,
or there would be a slight delay due to the extra latch - in either case it 
implies logic that converts two MODE4 pixels to one MODE8 pixel.

Without such logic, the trick I mentioned above to get a semblance of more than 
8 colors using only 3 digital signals limits the usability of the display as it 
actually produces a stippled pixel, which does not look 'smooth' enough for 
every combination of colors, so we would get a rather odd selection even if 
extra logic was used to do more complex mapping of bits to RGB components 
depending on the state of said bits and not only on even or odd pixel.

Depending on how far one can go, the results can actually be quite useful. 
One of the more creative ways to do this would be to 'abuse' the way the 10MHz 
mode 4 pixel clock is generated from the main 15MHz clock of the 8301. I 
mentioned a while back that 3 consecutive cycles of the 15MHz clock were used to
generate 2 cycles of the 10MHz clock by putting the point where the 10MHz clock 
goes from an even to odd cycle in the middle one of every 3 cycles at 15MHz. 
When looking at the signals with a scope. one can see that the implementation is
partially done with combinatorial logic as the periods of the even and odd 10MHz
clock cycles are not exactly the same. A modification of the logic to 
deliberately produce different lenghth even and odd pixels (such as 2 15MHz 
clock cycles for even and 1 cycle for odd) can be used along with some mapping 
logic (usually with one or two pixels total delay) to implement a 'pulse width 
modulation' scheme on the RGB lines and get a decent representation of 16 
colors. Actually 16 out of 64 discrete combinations can be chosen.

Downside: more logic but it is not overly complex, but the screen is a stippled 
one and without some form of filtering (which would BTW interfere with regular 
MODE4 making it blurry!) would produce moire patterns on a color monitor and dot
crawl on a TV.

While the 'top end' implementation of this logic indeed is capable of generating
64 'colors' given only a single bit for RGB, I am virtually certain there would 
have been no way to implement palette functionality inside the 8301.

How do we know this? Well, I am sure some of us wished for a 4 out of 8 colors 
MODE4, and this only requires 4x 3-bit 'memory' to store the 4 pallete entries 
for MODE4, that's 12 bits of storage. If that did not fit, a 16x6 bit storage 
plus 64x6bit look-up table ('ROM') hardly could.

All that being said, there is another aspect of MODE8 which is actually very 
annoying and may have well contributed to the QL's market fail because it makes 
graphics for games slower if you want to have it smooth at the same time - MODE8
has a very odd bit to pixel mapping. While it could be said that MODE4 mapping 
makes sense once one looks at the MOVEP assembler command (which later comes 
back to haunt us on 68040 and 68060...) and saves us a number of fairly small 
lookup tables in the already chock-full original ROMs, it does complicate things
for games. A simple chunky 4 consecutive bits per pixel, 'packed nibbles' 
organization would have made things much easier and faster. One thing that it 
certainly would have helped is already having a usable 16-color mode for 
business applications when higher resolution hardware became possible.

One could also argue using the flash bit as a 'hold' (no flashing) instead could
have been much more useful, as it would give the QL the ability to very quickly 
create filled polygons on screen (though not in many colors...). So, I'll leave 
this bit up for discussion...



4) Why not 4 screen areas given that there are already 2 banks of RAM, 64k each?

Well, this is a true mystery to me because out of all of the improvements or 
alternative ways of implementing stuff, this one would have been the easiest. It
does require an extra control bit in the MCR register (that's very little logic)
and a line from it to the already existing decode logic for /CAS0 and /CAS1. The
latter might actually be tha problem as this supplies an 'internal' bit for A16 
to be used when the display data is read in order to refresh the screen. Routing
is one of the BIG deciding factors on gate array utilization as it takes the 
same space that logic would normally take, made out of closely located gates 
connected by short 'wire' segments. Long wires (or busses) actually pass over 
un-committed gates that obviously can't then be used for logic, so this is a 
trade-off.

Granted, this is perhaps the least useful modification to be proposed, but then 
having two screen areas to begin with did not prove to be very useful.

One could argue, however, that since one is already using a given type of ULA 
and there is no added charge whatever the mask is that connects it's gates into 
a usable circuit (production costs don't depend on the pattern), one might as 
well put in small features even if they end up never been used as the only cost 
is a slight increase in engineer-hours used. Unfortunately, we all know that 
despite the huge delay, the QL was rushed to market. While I don't think that if
any of the mods here proposed would have made a huge difference, things do add 
up and... who knows.

For instance, implementing all of the above would get us:

1) No horizontal overscan (though perhaps a more hazy picture in MODE4 on a TV),
compatible with many monitors.

2) 63.7% memory speed utilization with the standard screen resolution, 59.95% 
with vertical resolution extended to 288 lines

3) 6.66% higher CPU speed, resulting in a speed improvement of 45.6% in speed of
execution from RAM for standard and 37% for extended resolution, over stock QL.

4) Obviously 32 more display lines (12.5% improvement) and at least a more game 
friendly 8 color (if not 16 color) display. Pretty much cutting edge graphics in
that price bracket at the time (business oriented, not game).

5) Full speed 'dark screen' mode when needed (given that it is a multitasking 
system, there could always be tasks that do things in the background when the 
screen saver goes up!).

6) The ability to do double-buffered flicker-free displays without having to 
dislodge the OS.

Would that have been of interest? Well, I'll leave this to you all.

Re: 8301
Postby Nasta » Sun Aug 12, 2018 12:57 pm

On average it should take the same as most of the time (4/5ths of it) the 8301 
incurs at least an 8-clock wait. However, one could (very carefully) construct a
limit case. This would happen every time the CPU attempts to write a byte just 
before the 8301 starts reading a long word from RAM. At this point it will 
ignore the CPU some clocks in advance of it's read slot if it deems there is no 
time to finish the CPU access before it has to read screen data. It only looks 
at /DS, so the fact it goes low later on write will make it skip a potentially 
valid access slot. A similar situation can happen if it is occasionally writing 
data to RAM while the visible portion of a line is in progress, interspersed 



with accesses performed elsewhere - it can miss potentially valid access slots. 
This is indeed because the logic is based on /DS timing on read, where it comes 
1 clock cycle early. On write, the 8301 counts on that one extra clock so it 
appears to it the cycle will take too long so it stalls the CPU.

Perhaps this is also a point where improvement could have been made, especially 
since the RAM actually latches the data provided by the CPU on write so looking 
at address lines and /WR could have been used to start a RAM cycle (/RAS goes 
low) and if /DS and /WR are found to be low right before /CAS is to be 
generated, it could safely proceed with the write counting on data having been 
latched on the falling edge of /CAS - even if the actual CPU cycle then extends 
into the next screen data read. If not, /CAS is not generated and the cycle ends
up being a refresh which does not produce nor alter any data.

However, given how 8302 decoding is handled (as if it was RAM) obviously the 
logic was simplified as much as possible and re-used for both reading and 
writing RAM as well as the 8302 and 8301. Making it more sophisticated would 
have complicated things - but then one could argue there could have been logic 
to spare had the 8302 decoding been re-done to connect it directly to the CPU 
bus, as it could have been right from the start. 8301 MCR write would easily be 
catered for because it's write only and very simple.

In the post above I have only mentioned improvements that can be handled inside 
the 8301, without breaking compatibility with existing motherboard versions - If
one could only count on the 8302 being directly on the CPU bus, there would have
been savings in logic in the 8301, not to mention the existence of a 'HAL' logic
chip to implement some small parts of logic that would save us pins on the 8301,
for even more streamlining. But alas, it is what it is.

IF the motherboard was re-spun even with the original 8301 and 8302 many 
improvements can be made, one of the better ones being the ability to run the 
CPU from a clock independent of the 7.5MHz the 8301 provides and screen RAM 
shadowing.

Replacing the 8301 with a FPGA based PCB with RAM on-board (either the PCB or 
the FPGA or both) opens up a whole world of possibility, even just with the re-
implementation of the basic functions. For instance, it's practically a given 
that full CPU access speed can be had AND line doubling VGA AND 
asynchronous/independent CPU clock all at once. Even a simpler non-VGA version 
based on an 128k x 8 static RAM would do a lot, as the common SRAM chip of that 
capacity can perform an entire access in a little more than half a CPU clock - 
so plenty of timing space to time-multiplex CPU and screen access. One could 
base the logic on alternate clock cycles where even is CPU and odd is screen 
access, at 7.5MHz a typical 80ns SRAM would cover the standard screen refresh 
needs without slowing down the CPU. A FPGA with 64k internal SRAM for both 
screens with an external 128k SRAM added as shadow and the other 64k of RAM (to 
emulate a 128k QL) would easily do QL video at VGA compatible timings with line 
doubling/tripling - and run the CPU with an independent clock and no waiting.


